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Introduction

Until some decades ago, only two types of all-carbon crystalline structure were known:

the naturally occurring allotropes diamond and graphite. The breakthrough which re-

volutionized carbon research came from experiments on clusters formed by laser vapori-

zation on graphite: The discovery first of C60 in 1985 [1] and then of carbon nanotubes

by S. Iijima in 1991 [2] marked the beginning of a new era in carbon science. Carbon

nanotubes are crystals with the shape of hollow cylinders made of one or more graphite

sheets. Soon after their discovery in multiwall form, carbon nanotubes consisting of

one single graphitic layer were synthesized [3, 4].

During the past ten years carbon nanotubes (CNTs) have been at the focus of

intense experimental and theoretical research. This is due to their potential for appli-

cations as well as to the fact that they represent an ideal model system to investigate

the physical properties of an ordered, quasi-one-dimensional crystal. From a techno-

logical point of view, one of the highlights of nanotube research is the construction of

nanotube-based electronic devices, such as single-electron transistors [5] or even logic

circuits [6]. Beyond the variety of applications, single-walled CNTs (SWCNTs) are

interesting for their fundamental physical properties. With a length of about 1 µm and

diameters around 1 nm, single-walled CNTs fall into the size range where quantum

effects become important and this, combined with their particular symmetries, leads

to remarkable electronic, magnetic and vibrational properties.

Vibrational properties are the subject of increasing attention for several reasons.

Besides the interest in the phonons of a system with such a unique structure [7], de-

tailed knowledge of the vibrational spectrum of CNTs is of central importance for

temperature-dependent properties such as charge, spin and heat transport [8], for su-

perconductivity [9], and optical characterization [10]. Recently, particular attention has

been paid to the thermal properties of carbon nanotubes since some of their applica-

tions may depend significantly on their thermodynamic features. A detailed knowledge

of energy dissipation and thermal transport is required for controlling the performance

and stability of nanotube-based devices. For this purpose, the role of molecular vibra-

tions might be very relevant. Especially at low temperatures the thermal properties are

iii
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determined by phonons, rather then by electrons. In this temperature regime carbon

nanotubes are characterized by ballistic phonon transport and thermal conductance

quantization [11].

The main practical aspect related to vibrational modes of CNTs is their optical char-

acterization: Raman spectra give information about the vibrational properties limited

to the center of the Brillouin zone, which can be used to distinguish among nanotubes

of different diameters through the radial breathing modes. It is a powerful tool to

derive properties such as tube diameter, tube orientation, metallic or semiconducting

nature of the nanotube and even tube chirality.

The first approaches to the theoretical determination of the phonon dispersion rela-

tions are phenomenological lattice-dynamical models, in particular force-constant mod-

els. These start from some approximation for the interatomic force constants or the

potential energy of the crystal. They are based on few adjustable parameters and are

able to reproduce satisfactory results and to describe accurately heat transport. An

alternative tool is given by first principles or ab initio calculations based on the quan-

tum mechanical description of electrons. This method includes all relevant effects and

provides accurate, experimentally-confirmed results without the need for adjustable

parameters. However, the computational effort is large, leading to severe restrictions

in the systems which can be handled in practice. The advantage of the phenomenolog-

ical models consists in their simplicity and the possibility of fast application. A good

model calculation can often provide reliable information that is indeed complementary

to that obtainable from more sophisticated methods.

In this work we present a detailed description of the vibrational modes of carbon

nanotubes using and comparing two different force-constant models. The latter are

then compared to ab initio results and used to calculate non-trivial thermodynamical

properties of carbon nanotubes, such as the specific heat and thermal conductance.

The thesis is organized according to the following plan:

• The physics of carbon nanotubes

Chapter 1 provides an introduction of the structural and geometrical properties

of carbon nanotubes, starting from graphene. Afterwards we give an overview of

experimental methods for measurements of vibrational frequencies, taking into

consideration in particular Raman spectroscopy.

• Fundamentals of lattice-dynamical theory

The theory of lattice dynamics is one of the most confirmed and successful the-

ories of solid state physics. A review of the basics is presented in Chapter 2,

emphasizing on the concept of the force-constant tensor. In this context we in-
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troduce the basic ideas of the force-constant model and the ab initio method,

illustrating their different approach to the calculation of vibrational modes. Ap-

plication of force-constant models on the example of two elementary systems are

also given. We begin then to draw the attention on the concepts of flexural modes

and bending forces, which are of central importance for CNTs.

• Phonon dispersion relations for graphene and carbon nanotubes

In Chapter 3 we turn to consider a single graphite layer, a graphene sheet. A

good comprehension of the lattice dynamics of graphene is the starting point

for dealing with carbon nanotubes. First, we focus on two main force-constant

approaches, the valence force field model and the direct parameterization of the

real-space force constants, reproducing some models presented in the literature.

By applying one of these models to graphene, we were able to find a set of

parameters in order to fit the phonon curves of graphene obtained by ab initio

calculations. We continue on this track also for carbon nanotubes. In Chapter 4,

we consider two specific force constant models applied to the nanotube geometry.

In particular, we concentrate on the important Raman-active radial-breathing

mode, which is most frequently used to characterize nanotubes, and on one of the

low-energy acoustic modes, the flexural mode, and on the main point whether

its dispersion is linear or quadratic. This result has crucial consequences for

the low-temperature specific heat. For a better understanding, we support our

calculations with the visualization of some selected modes.

• Thermal properties of carbon nanotubes

The remaining part of this work is concentrated on the thermodynamics of carbon

nanotubes. After discussing briefly the effect of temperature on lattice dynamics,

we take into consideration the specific heat, probing that its low-temperature

behavior contains information regarding the type of excitations involved and the

dimensionality of the system. Eventually, we investigate the low-temperature

thermal conductance of carbon nanotubes through an analysis based on the Lan-

dauer theory of heat transport. Nanotubes can conduct heat by ballistic phonon

propagation. We determine the thermal conductance quantum, the ultimate limit

to thermal conductance for a single phonon channel.
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Chapter 1
Structural properties of carbon nanotubes

A single-wall carbon nanotube (SWCNT) is built by a single graphite layer, called

graphene, rolled up into a hollow cylinder with a typical diameter of 0.7-1.5 nm. De-

pending on the way how to roll the sheet into a cylinder, one can obtain many possible

variants of carbon nanotubes, differing in diameter, chirality, number of atoms in the

unit cell, and in the orientation and size of the unit cell and the Brillouin zone. The

resulting types of carbon nanotubes (CNT) can be distinguished not only by their geo-

metrical structure but also by several important physical properties like the electronic

band structure, the spatial symmetry group and, as we will see, the lattice vibrations.

In Sec. 1.1 and 1.2, we explain the methods to describe the geometry of the graphene

lattice and show that it is transferable, with some adaptations, to carbon nanotubes.

For more details we refer to the books of Ref. [12, 13]. Section 1.3 briefly illustrates

vibrational spectroscopy on the important example of Raman scattering.

1.1 Geometric structure of graphene

Graphite is a three-dimensional (3D) layered crystal composed by planar sheets of

hexagonal rings of carbon atoms ordered in a honeycomb lattice. The interaction

between the graphite layers is relatively weak because the interlayer spacing of 3.35 Å is

much larger than the carbon-carbon bond length aC-C = 1.42 Å in the hexagonal rings.

In this work, we will focus on a single layer of graphite, a sheet called 2D graphite or

graphene.

In order to describe the geometry of graphene, we start considering the 2D hexagonal

Bravais lattice, which consists of atoms ordered in a triangular pattern in the plane as

1
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Figure 1.1: Panel (a): the 2D hexagonal lattice. Panel (b): the graphene honeycomb

structure is a hexagonal lattice with a two-atom basis. The dotted lines indicate a possible

choice of unit cell.

illustrated in Fig. 1.1 (panel (a)). It is defined by the lattice vectors:

a1 =

(√
3

2
a,
a

2

)
, a2 =

(√
3

2
a,−a

2

)
(1.1)

with the lattice constant a = |a1| = |a2| = 1.42×
√

3 = 2.46 Å. The typical honeycomb

structure of graphene is a 2D hexagonal lattice with a basis of two atoms, which we

call type A and B, as illustrated in Fig. 1.1 (panel (b)). There are several possibilities

to choose a unit cell, the dotted lines indicate one in real space which has the shape

of a rhombus and is defined by the lattice vectors in Eq. (1.1). The reciprocal lattice

of both the hexagonal lattice and of graphene is again hexagonal but rotated by 90◦

respectively to the real space one and with a different lattice constant, which now is

4π/
√

3a. The reciprocal lattice vectors fulfill the condition ai · bj = 2πδij and can be

written as

b1 =

(
2π√
3a
,
2π

a

)
, b2 =

(
2π√
3a
,−2π

a

)
. (1.2)

Figure 1.2 shows the reciprocal lattice vectors pointing at the reciprocal lattice points,

while the shaded hexagon indicates the Brillouin zone. The hole system has a six-fold

rotational symmetry, which means that rotations by 60◦ do not change the lattice. Γ,

K and M are high-symmetry-points and are situated respectively at the center, the

corner, and the center of the edge of the Brillouin zone. We will see that it is usual to

calculate the phonon dispersion relations along the lines connecting this three points.
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Figure 1.2: The reciprocal lattice of graphene is a two-dimensional hexagonal lattice. The

grey shaded area represents the first Brillouin zone.

1.2 Geometric structure of carbon nanotubes

Since there are many possibilities to roll a graphene sheet into a cylinder, one can

obtain carbon nanotubes with quite different microscopic structure. Carbon nanotubes

are classified in two categories: chiral and achiral nanotubes. The first one have a spiral

symmetry while the second one are completely symmetric around the nanotube axis.

There are only two types of achiral nanotubes, called armchair and zigzag due to the

shape of the cross section along the circumference. Three examples of nanotubes are

shown in Fig. 1.3. Because the microscopic structure of carbon nanotubes is derived

from that of graphene, carbon nanotubes are usually labeled in terms of graphene

lattice vectors. It is common to define a circumferential vector and a vector parallel to

the tube axis.

1.2.1 Chiral vector C

The chiral vector uniquely determines the hole microscopic and geometric structure of

a nanotube and provides the classification of them in different categories. C is defined

in terms of the unit vectors of graphene and the sheet is rolled up in such a way, that

it becomes the circumference of the tube:

C = na1 +ma2 ≡ (n,m) (1.3)

where n and m are integers and define a particular tube, as it is shown in Fig. 1.4.

Consequently the tube diameter can be easily calculated by the length of the chiral
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(a) (b) (c)

Figure 1.3: Sights from different angles on three types of carbon nanotubes: (a) an armchair

(10,10) CNT, (b) a zigzag (15,0) CNT, and (c) a chiral (12,8) CNT (taken from Ref. [14]).

vector:

dt =
|Ch|
π

=
a

π

√
n2 +m2 + nm. (1.4)

For a stable SWCNT, typical diameter values have been observed of the order of 0.7-1.5

nm. The chiral angle ϑ is given by the chiral vector measured relative to the direction

defined by a1 and can be calculated from

cosϑ =
C · a1

|C||a2|
=

2n+m

2
√
n2 +m2 + nm

. (1.5)

Since there are six definable angles because of the hexagonal structure of the lattice,

it is common the choose |ϑ| between 0◦ and 30◦, where 0◦ is the special case of a

Type C ϑ

armchair (n, n) 30◦

zigzag (n, 0) 0◦

chiral (n,m) 0◦ < |ϑ| < 30◦

Table 1.1: Properties of achiral (zigzag and

armchair) and chiral nanotubes.
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zigzag and 30◦ of an armchair nanotube. This restriction implies that we consider only

0 ≤ m ≤ n, without loosing in generality. Table 1.1 summarizes these facts.

1.2.2 Translational vector T

The translational vector is perpendicular to the chiral vector and reproduces the peri-

odicity of the nanotube structure along the axis direction. It is given by

T = t1a1 + t2a2 ≡ (t1, t2) (1.6)

t1 and t2 are integers and are chosen in such a way that C ·T = 0 with |T| as small as

possible. We obtain

t1 =
2m+ n

dR
, t2 = −2n+m

dR
(1.7)

where dR is the greatest common divisor of 2m+ n and 2n+m.

The chiral and the translational vector form a rectangle in the graphene sheet which

becomes, after rolling the sheet, a finite size cylinder; the latter defines the unit cell of

the nanotube. The translational period |T| is strongly dependent on the chirality of

the tube, in fact armchair nanotubes have the shortest unit cells with less number of

atoms and chiral tubes can have very long unit cells with many more atoms (see below).

Figure 1.4 shows the unrolled honeycomb lattice with the graphene unit vectors a1 and

a2 and an example of chiral and translational vector. Considering that the area of the

rectangular unit cell of a nanotube is |C×T|, the number N of graphene hexagons per

unit cell is:

N =
|C ×T|
|a1 × a2|

=
2(m2 + n2 + nm)

dR

(1.8)

and since the graphene unit cell contains two atoms, the number of atoms per nan-

otube unit cell is 2N . For example a (10,10) CNT has 40 atoms in the unit cell, the

close-by (10,9) CNT has 1084. As we will see later in this work, three-dimensional

phonon dispersion relations have 6N branches, meaning that two geometrically similar

nanotubes will lead to very different phonon spectra.

1.2.3 Brillouin zone of carbon nanotubes

As mentioned, the unit vectors of a CNT are the chiral and the translational vector,

which define a finite size cylinder. The reciprocal lattice vectors have to be perpendic-

ular to the unit vectors in real space, therefore we obtain one in the direction of the
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zig-
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C

T

Θ

O

B

B'
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a2

y

x

na1 ma2 A

Figure 1.4: The graphene honeycomb lattice. The chiral vector C and the translational

vector T are shown on the example of a (n,m) = (4, 2) CNT. The tube can be constructed

by rolling the honeycomb sheet so that points O and A coincide (and B and B’ coincide). ϑ

denotes the chiral angle (taken from Ref. [15]).

tube axis, defined as K2, and one that points along the circumference, K1. We can

calculate them with the relations

C · K1 = 2π, T · K1 = 0,

C · K2 = 0, T · K2 = 2π
(1.9)

and obtain using Eq. (1.7-1.8):

K1 =
1

N
(−t2b1 + t1b2), K2 =

1

N
(mb1 − nb2) (1.10)

where b1 and b2 are the reciprocal lattice vectors of graphene. The vector K1 is

naturally discretized by the periodic boundary condition of the circumferential direction

of the nanotube, while K2 depends on the boundary condition at the nanotube edges.

In case of an infinitely long nanotube the vector K2 is continuous. The wave vectors

along the circumferential direction obey to the following quantization condition:

k ·Ch = 2π`1 =⇒ k = `1 · K1 (1.11)

where `1 is an integer and goes from 0 to N −1. Since N K1 = −t2b1 + t1b2 is a vector

in the reciprocal lattice of graphene, wave vectors which differ by N K1 are equivalent.

For `1 = 1, ..., N − 1 none of the N − 1 vectors `1 K1 are reciprocal lattice vectors

of graphene, because t1 and t2 have no common divisor – see Eq. (1.7). Though the
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Figure 1.5: The Brillouin zone of a (10,10) CNT (panel (a)) and a (10,0) CNT (panel (b)).

It consists of N lines parallel to K2, the reciprocal lattice vector along the tube axis.

quantization condition implies that we have N discrete q vectors given by `1 K1 with

`1 = 0, ..., N − 1.

The one-dimensional Brillouin zone of carbon nanotubes is therefore a cut through

the Brillouin zone of graphene and consists of N lines parallel to the axis direction of

length 2π/|T|, as illustrated in two examples in Fig. 1.5. The number of lines increases

with increasing diameter, while their distance decreases. The allowed states are given

by

k = `1 K1 + `2
K2

|K2|
with − π

|T| ≤ `2 ≤
π

|T| , `1 = 0, ..., N − 1. (1.12)

If one of this lines goes through a K point, the nanotube is metallic, otherwise it is

semiconducting.

1.3 Experimental aspects

Of the common spectroscopic methods for the investigation of vibrations in solids—

inelastic X-ray scattering, light scattering, far-infrared absorption spectroscopy, and

neutron scattering [16]—Raman scattering has been by far the most used. We briefly

discuss the basics of Raman scattering and illustrate their importance for the analysis

of carbon nanotube spectra.
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1.3.1 Raman scattering

Inelastic light scattering by phonons, or Raman spectroscopy, is a useful in-situ non

destructive tool for investigating and characterizing molecular vibrations. It provides

a powerful method for determining phonon dispersion relations, particularly in low

dimensional materials, when combined with information about the electronic struc-

ture. The Raman process includes absorption and emission of light as well as inelastic

scattering of electrons by phonons. Besides the characterization of vibrations, also

information on electronic properties and electron-phonon interaction is obtained.

First order Raman scattering is a three-step process: an incoming photon with a

frequency ω1 and wave vector q1 excites an electron-hole pair. The electron is scattered

inelastically under the emission of a phonon with frequency ωph and wave vector qph.

The electron-hole pair finally recombines and emits the scattered photon ω2 with wave

vector q2. Energy and momentum are conserved during the process:

~ω1 = ~ω2 ± ~ωph (1.13)

q1 = q2 ± qph (1.14)

In the one phonon emission (Stokes process) or absorption (anti-Stokes process), one of

the two scattering processes is inelastic with a phonon emission or absorption, and the

other is an elastic scattering process mediated by the defect. Furthermore the Raman

spectra may change if one changes the frequency of the excitation laser. When the

excitation energy is close to an electronic state energy of high optical absorption, the

Raman intensity is enhanced, and this is known as the resonant Raman effect. Under

resonant conditions, more light can be absorbed, thereby enhancing the Raman signal

through the electron-phonon coupling process.

Among the 6N calculated phonon dispersion relations for carbon nanotubes, only

a few modes are Raman or infrared (IR) active, as specified by the symmetry of the

phonon modes. Group theory predicts that there are 15 or 16 Raman-active modes at

q = 0 for both chiral and achiral nanotubes. The Raman experiments in first order

excited with laser light in the visible or near-visible energy regime (514 - 1320 nm [10])

are limited to Γ-point phonons (q = 0) due to the small wave vector of the incident light.

For second-order scattering, the elastic scattering by a defect is replaced by inelastic

scattering by a second phonon. In the case of two phonons with the same frequency but

opposite wave vector, the Raman shift is about twice the single phonon (first order)

frequency and hence the shift with laser energy is approximately doubled. In higher

order processes the phonon wave vectors are not restricted to zero. The mechanism

of double resonance dominates the entire Raman spectrum of carbon nanotubes [17].
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Figure 1.6: Raman spectrum of a sample containing randomly oriented carbon nanotubes.

The four lower panels are the calculated Raman spectra for some armchair nanotubes

(n = 8, . . . , 11). The arrows indicate the positions of weaker Raman-active modes. (taken

from Ref. [10]).

The Raman scattering signal of CNT is so large that even isolated tubes could be

investigated.

Most of the Raman studies on single wall carbon nanotubes were made on nanotubes

synthesized by the laser vaporization method with transition metal catalysts, or by the

carbon arc method. In both methods, the nanotubes grow in a triangular lattice to

form a bundle or ‘rope’ containing 10-50 nanotubes. Under some synthesis conditions,

the (10,10) armchair nanotube is the dominant species in the rope. In general, the

Raman samples have a narrow distribution of diameters and chiralities, which depend

on the catalysts that are used.

Rao and coworkers have reported Raman spectra for single-walled CNTs in which

they assigned the observed Raman modes with specific (n,m) nanotubes known to be

present in the sample [10]. Figure 1.6 shows the measured Raman spectrum, taken

on a sample containing microfiltered, randomly oriented single-walled CNTs dispersed

in a KBr pellet. The spectra were collected in a backscattering geometry at room

temperature with the 514.5 nm-laser incident at 45◦ with respect to the plane of the
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pellet. They showed that the Raman signal from the rope not only consists of graphite-

oriented modes, which occur around 1550 - 1600 cm−1, but also contains a strong low-

frequency mode, known as the nanotube radial breathing mode, which is special to

the nanotube geometry. Furthermore the predicted diameter dependence of the mode

frequencies can be easily observed, in particular in the low-frequency region.

The strongest low-frequency Raman mode is the radial breathing mode (RBM),

whose frequency is around 186 cm−1 for the (10,10) CNT (see Fig. 1.6). Because of

the strong dependence of the RBM frequency on nanotube diameter, the frequency of

the RBM mode can be used as a marker for assigning the approximate diameter dt

of the carbon nanotube [18]. The RBM frequency quickly decreases to 0 cm−1 with

increasing radius. We discuss later in Sec. 4.4 about the diameter dependence of the

RBM. Other two modes were observed in the low frequency region, around 116 cm−1

and 377 cm−1, but with lower intensities than the RBM mode. However, these are

important since they also show a diameter dependence of their frequencies. Instead

the Raman frequencies in the high frequency region, between 1550 cm−1 and 1600

cm−1, do not vary much with nanotube diameter. They originate from an out-of-phase

mode of graphite, and for this reason they are close to another. The intermediate

Raman modes around 1200-1500 cm−1 give almost low intensity peaks. In Section 4.5

we visualize the seven strongest Raman modes.



Chapter 2
Classical theory of lattice dynamics

The aim of lattice dynamics is to set up and solve the equations of motion for the

atoms in a crystal. To derive them we will use Hamiltonian mechanics, treating the

atoms as point masses moving according to the laws of classical mechanics.

In this Chapter the formalism for solving the equations of motion for the displace-

ment vectors is presented. For this purpose we introduce the Bloch theorem, which

allows us to use the high symmetry of crystal structure to obtain analytical results

as a function of the linear momentum. This reduces the order of the secular problem

that one has to solve in order to obtain the normal modes. In particular we focus on

the important concept of force-constant tensor and illustrate two different approaches

to calculate it. We conclude this Chapter by calculating the normal modes of two

archetypal systems, chosen as example: a one-dimensional linear chain of N atoms and

a two-dimensional square lattice.

2.1 Crystal Hamiltonian

In order to describe a crystal and its properties one has to start from the general

Hamiltonian of the solid, which is given by

H0 = Hion + Hel + Hel-ion. (2.1)

Ions and electrons can be considered as two systems described respectively by the first

and second term in the Hamiltonian H0, and they are in contact as mediated by Hel-ion.

The three terms are given by

Hion =

Nion∑

n=1

P2
n

2Mn

+
1

2

Nion∑

n,m=1
n 6=m

V (Rn − Rm), (2.2a)

11
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Hel =

Nel∑

`=1

p2
`

2m
+

1

2

Nel∑

k,`=1
k 6=`

e2

4πε0|r` − rk|
, (2.2b)

Hel-ion =

Nel∑

`=1

Nion∑

n=1

v (r` −Rn). (2.2c)

Here we use Rn, Pn and Mn for the coordinates, the momentum and the mass of the

ions and analogously r`, p` and m for the electrons. The potential V (Rn −Rm) is the

ion-ion interaction, while v (r` − Rn) gives the electron-ion interaction. The sums go

over the hole number of ions, Nion, or electrons, Nel, of the crystal. Starting from this

Hamiltonian one has to solve the time-dependent Schrödinger equation

H0Ψ = i~
∂

∂t
Ψ (2.3)

where Ψ = Ψ({r`}; {Rn}) depends on the configuration of the electrons and ions.

2.1.1 Separating the motion of electrons and ions

To solve the Schrödinger equation (2.3) we consider the Born-Oppenheimer approxi-

mation [19], whose basic steps are briefly illustrated below, following Ref. [20,21]. The

basic idea is to separate the motion of electrons and ions and then solve two distinct

Schrödinger equations. The electrons are assumed to move in a stationary potential

defined by any actual configuration of the ions. It is called also adiabatic approximation

because the electrons follow the motion of the ions adiabatically, that means instan-

taneously without changing their eigenstate, which is the state of lowest energy. This

assumption is justified by the mass ratio of m/M ∼ 10−4, indicating that the electrons

move much faster than the ions.

Basically we consider a quantum mechanical system of Nel interacting electrons in

a static potential generated by Nion cores at fixed positions Rn. It can be described by

the stationary Schrödinger equation

(Hel + Hel-ion)ψα = Eel,αψα (2.4)

where α describes a complete set of quantum numbers. The core positions Rn enter

only as parameter in the electronic wave functions ψα({r`}; {Rn}) and in the energy

eigenvalues Eel,α({Rn}). For the ions one obtains the time dependent Schrödinger

equation [20]:

(Hion + Eel,α)ϕα = i~
∂

∂t
ϕα (2.5)
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with

Hion + Eel,α =

Nion∑

n=1

P2
n

2Mn

+ Eel,α({Rn}) +
1

2

Nion∑

n,m=1
n 6=m

V (Rn − Rm).

︸ ︷︷ ︸
Uα({Rn}) : adiabatic potential energy

(2.6)

The motions of the ions, described by the wave function ϕα({Rn}), is therefore de-

termined by the potential energy of the ion configuration and by the energy of the

electron system in the eigenstate α. Commonly only the ground state Eel,0 is taken

into account and the index α can be dropped, but since it is generally not possible

to calculate the dependence of Eel,0 on the ion configuration, semiempirical models are

chosen to determine the adiabatic potential.

In conclusion, to describe the dynamic of the crystal lattice one has consider the

Hamiltonian

H = Hion + Eel =

Nion∑

n=1

P2
n

2M
+ U({Rn}). (2.7)

2.1.2 Harmonic approximation

In the harmonic approximation the potential energy of a lattice ion is expanded in

powers of the instantaneous displacement from its equilibrium position and only the

first nonvanishing term is taken. To describe the ion configuration, characterized by

the instantaneous location of the atoms, we use the following notation:

Rn,τ(t) = R(0)
n,τ + un,τ(t) (2.8)

Hence at time t the ion is located at Rn,τ (t), while R
(0)
n,τ is its equilibrium position, as

denoted by the superscript “0”. Since we want to develop a general model that can

be applied also to crystals with more than one atom in the basis, we introduced also

the index τ which characterizes every single atom of the basis. Now the equilibrium

position of the ions is R
(0)
n,τ = R

(0)
n + R

(0)
τ where R

(0)
n denotes the Bravais lattice points

or a suitable reference point inside the unit cell and R
(0)
τ are the vectors from this

point to the τth basis point. The index n therefore runs from 1 to the number Nu of

Bravais lattice points (or unit cells) in the solid and τ runs from 1 to r for a basis made

up of r atoms. Furthermore, un,τ (t) are the time-dependent displacements around the

equilibrium positions. Figure 2.1 shows an example of the introduced vectors.

At low enough temperature, as well as at high enough pressure, it is reasonable

to assume that the atom displacements are small compared to the lattice spacings, so
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R
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B’

O

(0)Rn

R τn,
(0)

(0)

τ (t)

Figure 2.1: Coordinates of the ions shown at the example of the unit cell of a (3,3) CNT (O

has to coincide with A and B with B’, forming a finite size cylinder): the vector R
(0)
n points

at a Bravais lattice point and the index n denotes the unit cell. The vector R
(0)
τ points from

the lattice point n to every single atom of the basis, thus the equilibrium position of the ions

is R
(0)
n,τ = R

(0)
n + R

(0)
τ . The index τ runs from 1 to r, the number of atoms per unit cell. In

this example we have r = 12. The vector Rn,τ (t) indicates the instantaneous positions of the

ions and un,τ (t) their displacements.

that the ions move close around their equilibrium position. Under this condition, the

adiabatic potential can be expanded in a Taylor series about the static positions R
(0)
n,τ :

U({Rn,τ}) = U({R(0)
n,τ}) +

Nu∑

n=1

3∑

α=1

r∑

τ=1

∂U
∂Rn,τ,α

∣∣∣∣
R

(0)
n,τ

un,τ,α

+
Nu∑

n,m=1

3∑

α,β=1

r∑

τ,τ ′=1

1

2

∂2U
∂Rn,τ,α∂Rm,τ ′,β

∣∣∣∣
R

(0)
n,τ ,R

(0)

m,τ ′

un,τ,αum,τ ′,β

+ O(u3) (2.9)

where Rn,τ,α are the ion coordinates and α, β are Cartesian vector components. The

first term in the expansion is the potential energy of the ion lattice in equilibrium. It

does not contribute to the dynamics of lattice vibrations, which is our interest here, and

thus can be dropped. The derivatives are evaluated with the atoms at their equilibrium

position, which implies that the potential energy U({Rn,τ}) has its minimum and

the first derivative vanishes. In the harmonic approximation terms of higher than

second order are neglected, because they generate anharmonic, nonlinear responses

(see Sec. 5.1). The inclusion of higher anharmonic terms in the expansion means an

interaction between the phonons, but it is not topic in this work. Thus, the second

order becomes the leading term and we can rewrite it defining a 3 × 3 tensor, whose
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elements are

Φαβ(R(0)
n,τ ,R

(0)
m,τ ′) =

∂2U
∂Rn,τ,α∂Rm,τ ′,β

∣∣∣∣
R

(0)
n,τ ,R

(0)

m,τ ′

. (2.10)

It is called force-constant tensor or interaction tensor and couples pairs of atoms and

is a function of their equilibrium positions. The translational symmetry of the lattice

requires also that Φαβ does not depend on the two equilibrium positions separately, but

only on their difference: Φαβ(R
(0)
n,τ ,R

(0)
m,τ ′)=Φαβ(R

(0)
n,τ −R

(0)
m,τ ′). We will discuss later in

Sec. 2.3 about the meaning and properties of the force constant tensor and show how

to calculate it in some specific cases.

Summarizing we obtain a compact expression for the potential energy:

Uharm(R1, . . . ,RN) =
1

2

Nu∑

n,m=1

3∑

α,β=1

r∑

τ,τ ′=1

un,τ,α Φαβ(R(0)
n,τ − R

(0)
m,τ ′) um,τ ′,β

=
1

2

Nu∑

n,m=1

r∑

τ,τ ′=1

un,τ · Φ(R(0)
n,τ − R

(0)
m,τ ′) · um,τ ′ (2.11)

and the Hamiltonian (2.7) of the system is:

H =
1

2

∑

n,τ

Mτ

∣∣∣∣
∂un,τ

∂t

∣∣∣∣
2

+
1

2

∑

n,τ,α
m,τ ′,β

un,τ,α Φαβ(R(0)
n,τ − R

(0)
m,τ ′) um,τ ′,β. (2.12)

The equations of motion are a set of 3rNu coupled second order differential equations

for each component α of the atomic displacements:

Mτ
∂2un,τ,α

∂t2
= − ∂U

∂un,τ,α

= −
∑

m,τ ′,β

Φαβ(R(0)
n,τ − R

(0)
m,τ ′) um,τ ′,β. (2.13)

The expression above represents the force in the α direction on the τth ion in the nth

unit cell when the τ ′th ion in the mth unit cell is displaced in the β direction.

2.2 Lattice normal modes

2.2.1 Bloch theorem and dynamical matrix

The solution of the coupled differential equations (2.13) is generally a very intricate

mathematical problem, as it is of order 3rNu. Due to lattice periodicity it is possible

to reduce the problem to a much lower order, 3r, as we will see, where r is the number

of atoms per unit cell: this is the essence of the Bloch theorem.
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Due to the perfect periodicity of the crystal, we can choose the index n in Eq. (2.13)

to be equal to zero without loosing in generality. Furthermore since the force-constant

tensors depend on the cell indices n and m only through their difference (see Sec. 2.3),

the Hamiltonian (2.12) commutes with the operator describing a rigid translation of the

crystal through a lattice translation vector. It follows that the atomic displacements

must simultaneously be eigenfunctions of the translation operator and the Hamilto-

nian [22]. This is what the Bloch theorem states: the spatial part φ(r) of a classical

normal mode can be written so that under a real space lattice translation R, taken

from the set of lattice points {R}, it transforms as

φ(r + R) = eiq·Rφ(r) (2.14)

where q is the wave vector that specifies the spatial dependence of φ(r) and eiq·R are the

eigenvalues of the translation operator. From this fact follows that the eigenfunctions

can be written as a product of a plane wave and a function f(r):

φ(r) = eiq·Rf(r) (2.15)

where f(r) has the periodicity of the Bravais lattice, f(r + R) = f(r) for every vector

R of the Bravais lattice. For further specifications and the proof of the theorem we

refer to the book of Ashcroft and Mermin [22].

With the help of the Bloch theorem it is now possible to solve analytically the

coupled equations (2.13). To do this we follow a standard formalism as described for

example by Cleland [23] or Madelung [24]. Since we are searching for eigenmodes, all

atoms must have the same frequency and therefore the normal modes have a functional

dependence of the type

un,τ (t) = An,τ e−iωt (2.16)

where An,τ gives the spatial dependence and e−iωt the harmonic time dependence. The

general motion of the crystal will be a superposition of the harmonic motions, and in

general is a non-periodic motion. We can now write the vector displacements An,τ in

Bloch form and obtain

un,τ (t) = Aτ eiq·R
(0)
n e−iωt. (2.17)

Aτ gives the amplitude of the mode. Starting from now, we set Mτ ≡M , since we are

interested in carbon nanotubes and there all the ions have the same mass. Inserting

expression (2.17) in (2.13), the equation of motion for the τth atom in the nth unit cell

becomes

ω2MAτ,α =
∑

m,τ ′,β

Φαβ(R(0)
n,τ − R

(0)
m,τ ′) eiq(R

(0)
m −R

(0)
n )Aτ ′,β. (2.18)
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We can rewrite this expression defining a new tensor D(q) as the Fourier transform of

the force constant tensor. Its components are:

Dττ ′

αβ (q) =
1

M

Nu∑

m=1

Φαβ(R(0)
n,τ − R

(0)
m,τ ′) eiq(R

(0)
m −R

(0)
n ). (2.19)

It is called dynamical matrix and is hermitian. As one can see it does not depend

on the index n of the unit cell. In a periodic system, the dynamical matrix elements

are given by the product of the force constant tensor Φ(∆R
(0)
nm) and a phase difference

factor eiq·∆R
(0)
nm . Now the equations of motion (2.13) can be written in the compact

form

ω2
sAτ,α =

r∑

τ ′=1

3∑

β=1

Dττ ′

αβ (q)Aτ ′,β. (2.20)

Lattice periodicity has thus reduced the system of 3rNu equations to a system of 3r

equations. They form the following eigenvector-eigenvalue problem:

ω2
s





A1,x

A1,y

A1,z

A2,x

A2,y

A2,z

...

...

Ar,x

Ar,y

Ar,z





=





D11
xx D11

xy D11
xz D12

xx D12
xy D12

xz · · · · · ·
D11

yx D11
yy D11

yz D12
yx D12

yy D12
yz · · · · · ·

D11
zx D11

zy D11
zz D12

zx D12
zy D12

zz · · · · · ·
D21

xx D21
xy D21

xz · · · · · · · · · · · · · · ·
D21

yx D21
yy D21

yz · · · · · · · · · · · · · · ·
D21

zx D21
zy D21

zz · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
Dr1

xx Dr1
xy D21

rz · · · · · · · · · · · · · · ·
Dr1

yx Dr1
yy D21

rz · · · · · · · · · · · · · · ·
Dr1

zx Dr1
zy D21

rz · · · · · · · · · · · · · · ·









A1,x

A1,y

A1,z

A2,x

A2,y

A2,z

...

...

Ar,x

Ar,y

Ar,z





. (2.21)

The dynamical matrix is a hermitian and positive definite matrix and therefore its

eigenvalues ω2
s are real and positive. In order that the system is stable in the harmonic

approximation ωs must be real, because an imaginary frequency corresponds to atomic

motions whose amplitudes depend exponentially on the time.

For each q there are 3r eigenfrequencies ωs(q) = ωs(−q), s = 1, . . . , 3r. For each ωs

Eq. (2.20) has a solution Aτ,α = as
τ,α(q). These solutions can be combined to vectors

as in (2.21). They are defined except for a common factor which can be chosen such

that the as
τ (q) are normalized and orthogonal to each other. For the displacements we

then have:

us
n,τ (q, t) = as

τ (q) ei(q·R0
n−ωs(q)t). (2.22)
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They form a complete set of solutions, called normal modes, that can be used as basis

for representing an arbitrary motion of the lattice. The function ω(q) is periodic in

q-space, so we need to consider only one Brillouin zone, consisting of exactly Nu values

of q. Since s can take 3r values, there are at most 3rNu different ωs(q), as many as

the crystal has internal degrees of freedom.

2.2.2 Boundary conditions

Up to now we considered an infinite system where any equivalent atom has the same

nearest neighbor configuration, neglecting the fact that atoms at the edge of the crystal

have less number of neighbors and therefore need a special treatment. This presents

a disturbing aspect and creates only difficulties in the analysis. Boundary conditions

simplify the mathematics considerably without influencing significantly the physics of

the problem. They work very well in large systems, where the typical wavelengths are

much smaller than the solid dimensions and thus surface effects become irrelevant. We

will consider the case of periodic and of fixed boundary conditions.

In case of periodic boundary conditions, the motion in each point is assumed to be

identical to that at a repeated point at the distance L away, where L is the size of

the crystal [22]. We make this assumption under the condition that the macroscopic

properties of the crystal do not change. For our purpose it is useful to take a periodicity

volume that is commensurate with a unit cell of the crystal. If ai (i = 1, 2, 3) are the

lattice unit vectors, the size of the crystal in this directions is Li = Niai. Here Ni

denotes the number of Bravais lattice points that one passes going for a distance Li in

direction ai. The periodic boundary condition reads then:

φ(r +Niai) = φ(r), i = 1, 2, 3. (2.23)

Here φ(r) indicates general crystal variables, as for example the spatial part of a classical

normal mode or a quantum mechanical energy eigenstate. Nu = N1N2N3 is the number

of unit cells in the crystal. Now applying the Bloch theorem (2.15) on Eq. (2.23) one

obtains that the wave vector q can take only discrete values in q space [22]. In the

direction ai they are

qi =
2π

Li
m =

2π

ai

m

Ni
, −Ni

2
≤ m ≤ Ni

2
. (2.24)

The number of allowed q vectors in one Brillouin zone is equal to the number of unit

cells Nu in real space lattice.

For many purposes the most realistic boundary conditions are to fix the ends of the

lattice to rigid supports. This is the case of fixed boundary conditions. The solutions
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are now standing waves, given by the superposition of the left- and right-going waves

found in the case of periodic boundary conditions. From the condition that the walls

do not move, uwalls = 0, one obtains the restriction for the wave vectors. The q vectors

are again discretized but not with the same values as in periodic boundary conditions:

qi =
π

ai

m

(Ni + 1)
, 0 < m < Ni + 1. (2.25)

In Sec. 2.4.1 we will show it on the example of the linear chain.

It is clear that each lattice with fixed boundary conditions is naturally embedded

in configurations of a system with periodic boundary conditions. Other than the re-

striction for the wave vector, the force constant tensors and the equations of motion

are the same as for an infinite solid; we will therefore ignore the discretized values for

the wave vector and assume that q can be treated as a continuous vector.

2.3 The force-constant tensor

The concept of force-constant tensor is of central importance within the model ap-

proach of calculating normal modes. We introduced it as the second derivative of the

interaction energy at equilibrium:

Φαβ(R(0)
n,τ − R

(0)
m,τ ′) =

∂2U
∂Rn,τ,α∂Rm,τ ′,β

∣∣∣∣
R

(0)
n,τ ,R

(0)

m,τ ′

. (2.26)

The derivatives are taken with respect to the components of the atomic displacements

and evaluated with the atoms at their equilibrium position. Since the form of the

force constant tensor depends strictly on the potential that we choose, it reflects the

characteristics of the different models and presents a valid possibility to compare them

among each other. The name is justified by the fact that in the force constant model

the atom interactions are symbolized by springs that couple pairs of atoms. Every

entry Φαβ gives the spring force constant acting on the atom at R
(0)
n,τ in direction α

when the atom at R
(0)
m,τ ′ is shifted in direction β.

2.3.1 General properties

Apart from specific features characterizing a special lattice, the force constants are sub-

jected to a number of general restrictions resulting from certain invariance conditions

every solid must obey. In particular they are linked by a large number of symme-

try relations, which greatly simplify the calculations. Here we consider only the most

relevant ones.
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As we already mentioned, due to the invariance of the lattice under translation it

follows:

Φαβ(R(0)
n,τ ,R

(0)
m,τ ′) = Φαβ(R(0)

n,τ − R
(0)
m,τ ′). (2.27)

According to Newton’s third axiom (actio=reactio) the tensor Φ is inversion symmetric

in its variables, which means:

Φαβ(R(0)
n,τ − R

(0)
m,τ ′) = Φαβ(−(R(0)

n,τ − R
(0)
m,τ ′)). (2.28)

It is symmetric in its indices:

Φαβ(R(0)
n,τ − R

(0)
m,τ ′) = Φβα(R(0)

n,τ − R
(0)
m,τ ′). (2.29)

If the displacements um,τ ′ are the same for all the atoms m, τ ′, the crystal is only

translated and the potential energy does not change. This means that ∂U/∂un,τ,α = 0

and according to Eq. (2.13) it follows:

∑

m,τ ′,β

Φαβ(R(0)
n,τ − R

(0)
m,τ ′) uβ = 0 for any uβ (2.30)

so that for every αβ tensor element holds:

∑

m,τ ′

Φαβ(R(0)
n,τ − R

(0)
m,τ ′) = 0. (2.31)

This is an important rule called acoustic sum rule, which has always to be fulfilled.

It is a good method to verify the correctness of the calculations of the force constant

tensors or also a practical method to determine the self-interaction terms Φαβ(0) of the

dynamical matrix.

2.3.2 Model approaches

A practical method of investigating vibrational properties is to use an empirical force-

constant model. The approach is based on a microscopic examination of the forces

between the ions and on the idea that the motion of the atoms in a solid is governed

by spring-like harmonic force constants. In model approaches one assumes an analytic

expression for the interaction energy of two or more atoms, and then calculates the

force constants as a function of the parameters involved in this expression. Thus, the

crucial point is to construct an appropriate analytical form for the potential energy of

a crystal, which mimics the behavior of the “true” potential in realistic way for specific

lattices taken in consideration. It is subjected to various physical requirements: some
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general conditions, such as rotational and translational invariance, and those imposed

by the symmetry of the crystal. In a simple approximation it is almost a sum of pairwise

terms, with the energy of a pair of atoms depending on their relative distance.

In the attempt to capture as much as possible the physics and chemistry of the

bonding, it is necessary to introduce interaction-energy terms that involve more than

two atoms. In fact a single spring can simulate a bond successfully only if the bonding

forces are central, as in ionic crystals. For a lattice based on covalent bonds the bond-

ing forces are directional and therefore depend on the bond angle. Such forces can be

described only by more than one spring, in particular angular springs are needed. A

typical analytical form for the interaction energy is constituted by a number of func-

tions, depending on geometrical quantities such as distances or angles, or on other

variables such as atom coordinations. Another important aspect is that bonding forces

do not act only between nearest neighbor atoms. In principle they must also be con-

sidered to involve even atoms which are far apart. The experimental results can be

reproduced as closely as possible by increasing the number of the force constants. This

improves the results considerably but introduces more and more parameters in the

calculations, deviating from the purpose to find a successful model with a small num-

ber of parameters. One has to find a balance between taking the minimal number of

parameters and still reproducing satisfactory results.

In Section 2.4.2 we illustrate the importance of the choice of the potential making

a comparison between different potentials shown on the example of the square lattice.

In Chapter 3 and 4 we will see that systems such as graphene or carbon nanotubes

require a more sophisticated approach, with the inclusion of interaction-energy terms

involving more than two atoms.

2.3.3 Ab-initio approach

The first-principles or ab-initio approach is a method based on quantum-mechanical

theory that does not rely on input from experimental informations. The basic idea

is to determine the interatomic force constants through the total energy of a crystal

with frozen nuclear coordinates. For this purpose the quantum-mechanical problem

including all electrons and nuclei has to be solved. Starting point is again the Born-

Oppenheimer approximation: The remaining many-particle problem of interacting va-

lence electrons, which feel the field of the ionic cores, can be simplified by means of

the density-functional theory (DFT). This is a method for finding the ground state

properties of the Schrödinger equation of a many-body system. The central idea is

to express the electronic energy as a functional E[n(r)] of the single-particle density
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n(r), which is minimal only if n(r) equals the ground-state density n0(r) of the elec-

trons. Kohn and Sham have found an expression for E[n(r)] by mapping the interacting

many-electron system into a system of noninteracting electrons moving in an effective

potential [25]. The ground-state electron density is obtained from the solution of a

set of self-consistent coupled single-particle equations which are known as Kohn-Sham

equations.

There are two commonly used approaches based on DFT: The so-called frozen

phonon method and the perturbative approach [26]. The former consists of the com-

putation of the total energy as a function of atomic displacements. A distorted crystal

is treated as a crystal in a new structure with a lower symmetry than the undistorted

one. The electronic energy of the crystal can be computed as a function of a suit-

ably chosen phonon coordinate and used for dealing with both the undistorted and

the perturbed crystal. The interatomic force constants can be obtained by numerical

differentiation of the calculated energy. Unfortunately, symmetry reduction due to per-

turbation increases drastically the computational effort. To retain partial symmetry

one uses displacements corresponding to superstructures, which restricts the practical

application of the method to phonons with high-symmetry wave vectors. For the in-

vestigation of phonons not only at the zone center, it is necessary to use larger unit

cells for a proper description of the periodicity according to the wave vector. This is

the main disadvantage of the frozen phonon approach.

The use of supercells can be avoided employing the perturbative approach to the

DFT. This generalization is called density-functional perturbation theory (DFPT) [27].

Within the Born Oppenheimer approximation, lattice distortions associated with a

phonon can be regarded as static perturbations acting on the electrons. It can be shown

that the determination of the force acting on the atoms only requires the calculation of

the electronic ground state density for a given configuration of atoms. This allows to

determine the electronic contribution to the interatomic force constants. Moreover, the

linear variation of the electronic density upon a static external perturbation allows to

calculate the change in the total energy up to second order. Hence, the harmonic force

constants can be calculated by combining DFT with first-order perturbation theory.

This procedure results in a system of coupled equations that should be solved self-

consistently. The DFPT theory allows to calculate the dynamical matrices on a fine

grid of wave vectors in the Brillouin zone by using the same unit cell as in the ground-

state calculations. Thus, it is possible to determine complete phonon dispersion curves.

In conclusion, comparing the force-constant-model approach with the ab initio

method, one can state that the former provides a fast method for obtaining phonon dis-

persion curves even for complex systems of considerable size. However, such models are
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Figure 2.2: The one dimensional linear chain of N atoms connected by springs. On the left

it is shown with periodic boundary condition and on the right with fixed boundary conditions

(taken from Ref. [23]).

an a posteriori construct: Their predictive power is limited to those systems which are

already partially known from experiments, and even in these cases the predictions for

the unknown properties are not very reliable. The advantage consists in its simplicity

as compared to quantum mechanical computational efforts of ab initio calculations.

2.4 Archetypal examples

In this Section we want to show on minimal archetypal examples few concepts which

are central in the physics of carbon-nanotube lattice dynamics. Namely, we will show

the emergence of q2-dependent normal modes (also called flexural modes) and the need

to generalize nearest-neighbor bond-stretching models.

2.4.1 The one-dimensional linear chain of N atoms

After presenting above a general formalism to get an expression of the equations of

motion and to solve them, we now show how to find the normal modes of a simple

system, a one-dimensional linear chain of N atoms. We will see that solving directly

Eq. (2.13) leads to an N -dimensional linear system which is not pleasant to solve, but

considering the translational symmetry of the system and using the Bloch theorem one

can greatly simplify the purpose.

In the linear chain all the atoms have mass M and are connected to their nearest

neighbors by massless springs with force constant k and equilibrium length r0, as shown

in Fig. 2.2. In the force-constant models the bonds between atoms are represented by

springs and therefore the diatomic interaction is given by the spring potential energy

Uspring = k(un − un+1)
2/2, where un is the displacement of the nth atom. Summing
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over N atoms, for the whole chain we obtain

U =
1

2

∑

all
springs

Uspring (2.32)

and Newton’s equation of motion (2.13) for the nth atom becomes:

Mün = k(un+1 − 2un + un−1). (2.33)

In this simple example one can clearly see the meaning of the force constant ten-

sor (2.10), which is 1 × 1 because of the one-dimensionality of the system. Comparing

the above expressions with Eq. (2.13) one can see that for the nth atom the tensor is

Φ(R
(0)
n − R

(0)
n+1) = Φ(R

(0)
n − R

(0)
n−1) = −k and Φ(R

(0)
n − R

(0)
n ) = Φ(0) = 2k, represent-

ing respectively the force constant of the springs connecting it with the two nearest

neighbor atoms and a self-interaction constant, given by the fact that in a harmonic

oscillation the force on a mass is direct proportional to its own displacement.

For a chain with a finite number of atoms one has to consider also the special case

of the atoms 1 and N , that form the end of the chain. We can suppose that they

interact only with one neighbor atom, but as discussed in Sec. 2.2.2 the best solution

is to introduce boundary conditions.

2.4.1.1 Periodic boundary conditions

In the case of the linear chain applying periodic boundary conditions means that we

connect the first and last atom by a spring of the same type as inside the chain. The

chain becomes a ring, but the system remains still one-dimensional. The condition

to describe it mathematically is u1 = uN+1, or u0 = uN . Since we are searching for

eigenmodes, all atoms must have the same frequency. Now to solve Eq. (2.33) we make

the Ansatz

un = An e−iωt. (2.34)

An is the time independent amplitude of atom n. This leads to the eigenvector-

eigenvalue problem:

(
ω

ω0

)2





A1

A2

A3

...

...

AN





=





2 −1 −1

−1 2 −1

−1 2
. . .

. . .
. . .

. . .
. . .

. . . −1

−1 −1 2









A1

A2

A3

...

...

AN





(2.35)
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with ω2
0 = k/M . It is an N -dimensional linear system and not very convenient to solve.

But according to the Bloch Theorem, the amplitudes on different lattice sites differ only

by a phase factor: An = A eiqrn where A is the overall amplitude and rn = nr0 the

equilibrium position of the nth atom. The spatial dependence of the modes is sinusoidal

with wave vector q. Thus we search for normal modes that have the form

un = A eiqrn e−iωt. (2.36)

The boundary condition u0 = uN imposes that eiqNr0 = 1, so that q assumes discrete

values given by

qm =
2π

r0

m

N
(2.37)

where m is an integer. Inserting the Ansatz (2.36) in Eq. (2.33) we will get the eigen-

frequencies ωm as a function of the wave vector qm:

ωm = ω0

√
2 − 2cosqmr0 = 2ω0

∣∣∣sin
qmr0

2

∣∣∣ . (2.38)

In Figure 2.3 the solution is plotted for q in the range −π/r0 ≤ q ≤ π/r0. Values

of q out of this range do not represent physically different solutions and can be ne-

glected [23]. This means that the index m goes from −N/2 to N/2 so that there are

exactly N values for q that give distinct solutions. Instead q changes continuously only

in the limit of a chain composed by an infinite number of atoms.

-π/r
0

0 π/r
0

2ω0

ω

Figure 2.3: The dispersion relation of the

one dimensional linear chain consists of an

acoustic mode. It is plotted without con-

sidering the discreteness of the wave vec-

tor and for ω0 =
√

k/M . At long wave-

lengths (q → 0) the frequency is linear in

q.

The effective atomic displacements are given by the real- or imaginary part of expres-

sion (2.36), thus the normal modes are characterized by an oscillatory behavior. A

special case arises when m = 0 because it follows that q = 0: the displacements of

all the atoms have same amplitude and direction, so it represents an infinite wave-

length “oscillation” or a translation mode of the whole crystal. Due to the translation

invariance of U this mode has zero frequency.
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2.4.1.2 Fixed boundary conditions

Let us consider the same chain as before, but now the first and last atom (1 and N)

are constrained to two rigid walls, as shown in Fig. 2.2. The restriction imposes that

u0 = uN+1 = 0, in fact this are the displacements of the rigid walls and they are

obviously not dynamical variables. The equations of motion read





Mü1 = k(u2 − 2u1),

Mün = k(un+1 − 2un + un−1), for n = 2, . . . , N − 1

MüN = k(uN−1 − 2uN).

(2.39)

and a simple Ansatz un = An e−iωt gives the N -dimensional linear system:

(
ω

ω0

)2





A1

A2

A3

...

...

AN





=





2 −1 0

−1 2 −1

−1 2
. . .

. . .
. . .

. . .
. . .

. . . −1

0 −1 2









A1

A2

A3

...

...

AN





. (2.40)

Also in this case it is much more convenient to apply the Bloch Theorem, but taking into

consideration that the solutions will be standing waves, which means a superposition

of the travelling waves of Eq. (2.36). Thus the new Ansatz is

un = A sin(qnr0) e−iωt. (2.41)

Inserting it into the equations (2.40) we find the same relation ωm(qm) as in the case of

periodic boundary conditions, see Eq. (2.38). We obtain also a condition for the wave

vector q:

qm =
π

(N + 1)r0
m, 1 ≤ m ≤ N. (2.42)

The values of q are still discrete but in the range π
(N+1)r0

≤ q ≤ πN
(N+1)r0

. The index m

assumes positive values because we consider only standing waves with positive wave

vector q. Those with negative wave vector are physically equal. The special case of

m = 0 is excluded because it is not of physical interest: we can not have a translation

as in the case of periodic boundary conditions, in fact for q = 0 the displacements are

un = 0, and this represents a chain without movement.

Summarizing the expression for the dispersion relation is ωm = 2ω0 |sin(qmr0/2)|
(illustrated in Fig. 2.3) for both an infinite chain1 and a chain with boundary conditions.

1Or a chain with open boundary conditions
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a) b)

Figure 2.4: Bending forces in a linear chain. Panel (a): A displacement from equilibrium

position which does not change the bond angle Θ0 = π. In this case the bending potential

U of Eq. (2.43) is equal to zero. Panel (b): A displacement which changes the equilibrium

bond angle. Now U > 0, which means that there is a bending force acting.

To introduce boundary conditions has the effect of discretizing the values of the wave

vector q.

2.4.1.3 A minimal model for flexural modes

With the stretching potential of Eq. (2.32) we obtained a dispersion relation with linear

q dependence for long wavelengths. Now we want to clarify the nature of modes with

q2 dependence, as it emerges e.g. in the so-called flexural modes. We will show the

importance of bond-bending forces and how these are correlated to the flexural modes.

So far we considered a stretching potential which is responsible for variations of

the bond lengths, while it preserves the equilibrium bond angles between neighboring

atoms. Now we consider another type of potential, which acts in case of variation of

bond angles. The corresponding atomic displacements, which are due to bond-bending

forces, are illustrated in Fig. 2.4 (panel (b)). A possible bending potential describing

such a motion, where the atoms move perpendicular to the direction of the chain, is:

U =
k

2

N−1∑

n=1

(un+1 + un−1 − 2un)2. (2.43)

We solve the corresponding equations of motion with the same Ansatz as in Eq. (2.36)

and obtain the following expression:

ω2 =
k

M
[6 − 8 cos(qr0) + 2 cos(2qr0)] . (2.44)

After expanding the right hand side in a Taylor series with respect to qr0 and taking

the square root, we finally obtain:

ω =

√
k

M
r2
0 q

2 (2.45)
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which shows the expected quadratic dependence that is typical of the flexure modes.

It becomes also clear why the modes with q2 dependence are called flexural modes:

the atoms move in a direction perpendicular to the direction of the wave vector and

the system makes transversal bending oscillations. This proves that bending forces,

flexural modes and a quadratic dispersion are strictly correlated. It will be relevant

when dealing later with carbon nanotubes.

2.4.2 The square lattice

Before we consider the normal modes of graphene and carbon nanotubes, we draw

attention to a few important points by taking the simple case of a two-dimensional

square lattice, as shown in Fig. 2.5. To do this we choose three different diatomic

interaction potentials and then compare the results.

2.4.2.1 Lennard Jones potential

First nearest-neighbor approximation

A very simple model for diatomic interaction is the Lennard Jones model, which cou-

ples pairs of atoms through the Van der Waals interaction and depends only on their

distance R. The atoms interact with one another only pairwise through a spherically

symmetric potential:

ϕ(R) = −2A
(r0
R

)6

+ A
(r0
R

)12

(2.46)

where the parameter A is the depth of the potential minimum at the equilibrium spacing

r0. The attractive term 1/R6 is characteristic of the van der Waals interaction, while

the repulsive term 1/R12 is somewhat phenomenological. The total potential energy is

then the sum over all atom pairs:

ULJ(R1, . . . ,RN) =
N∑

n,m=1
m>n

ϕ(Rn −Rm). (2.47)

The clause m > n has the purpose of considering each atom pair only once. In a first

approach we consider only nearest-neighbor interactions, as in Ref. [23], so an atom

situated at Rn interacts only with those at Rn ± r0x̂ and Rn ± r0ŷ. The 2 × 2 force

constant tensor can be calculated taking ULJ and evaluating Eq. (2.10). Due to the

translation invariance of the system, the tensor is the same for all other atoms. We

obtain:

Φ(r0x̂) = Φ(−r0x̂) = −A

r2
0

(
72 0

0 0

)
(2.48)
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0r

k

y

x

M

Figure 2.5: Two dimensional square

lattice of atoms of mass M connected

by springs with force constant k. We

illustrate a special case that happens

in the Lennard Jones model for qy =

0 and ω2 = 0. The displacements of

the atoms along the y direction, in-

dicated by the red arrows, have zero

frequency and thus do not cost en-

ergy. The system is instable against

shear strain along the y axis, as indi-

cated by the dotted blue lines.

Φ(r0ŷ) = Φ(−r0ŷ) = −A

r2
0

(
0 0

0 72

)

(2.49)

Φ(0) =
A

r2
0

(
144 0

0 144

)

. (2.50)

We note that the force constant tensor is identical to that found if the atoms are coupled

by springs with spring constant k = 72A/r2
0. The dynamical matrix can be calculated

through Eq. (2.19):

D(qx, qy) = 4k

(
sin2( qxr0

2
) 0

0 sin2( qzr0

2
)

)

. (2.51)

qx and qy are the components of q in the (two-dimensional) Brillouin zone. For the two-

dimensional square lattice this is itself a square of side length 2π/r0. The dynamical

matrix is almost diagonal so the eigenfrequencies can be easily obtained taking the

square root of the entries and multiplying them by 1/
√
M :

ω1(q) = 2ω0

∣∣∣sin(
qxr0
2

)
∣∣∣ (2.52)

ω2(q) = 2ω0

∣∣∣sin(
qyr0
2

)
∣∣∣ (2.53)

with ω0 =
√
k/M =

√
72A/(r2

0M). These correspond to the two branches possible

in the two-dimensional Bravais lattice. The result is analogous to that obtained for

the linear chain, see Eq. (2.38). Figure 2.6 shows a plot for one Brillouin zone. The
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Figure 2.6: Dispersion curve for a two dimensional square lattice in the Lennard Jones model

including first nearest neighbors. Here ω0 =
√

k/M with k = 72A/r2
0 . The system is instable

because for the whole lines qy = 0 and qx = 0 one of the two branches has zero frequency.

eigenvectors are A1 = (1, 0) and A2 = (0, 1), therefore the polarizations of the modes

are along the x and y direction.

An important statement is that the system is unstable, as we can recognize from the

fact that for the whole lines qy = 0 and qx = 0 one of the two normal modes has zero

frequency and hence does not cost energy. Let us take for example the line qy = 0 and

the branch described by ω2, which is equal to zero. The corresponding displacements

un(q) = A2 eiqxR0
n,x depend only on qx and not on t. This means that a shear strain

along the A2 (≡ ŷ) direction, as indicated by the dotted blue lines in Fig. 2.5, does not

cost energy. The system, having many possible configurations with the same energy

and thus no preferential configuration, is unstable against shear forces.

In conclusion the Lennard Jones potential including only nearest neighbors is not

an appropriate choice for this system. In order to understand this properly we first

need to discuss about the nature of the van der Waals forces. These are originated by

dipole-dipole interactions due to fluctuating dipoles. They are rather weak interactions,

which however dominate the bonding character of closed-shell systems. Therefore, the

Lennard Jones potential gives an excellent, quantitative description of the interaction

between noble gas atoms, such as argon, krypton, and xenon. On the other hand, it

is not at all adequate to model situations with open shells, as in covalent systems or

in metals. In these systems the two-body interactions scheme itself fails very badly.

However, the study of noble gas crystals goes beyond the purpose of this work. Anyway,
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regardless of how apt it is to model actual materials, the Lennard Jones potential

constitutes an extremely important model system. One could say that it is the standard

potential to use for all the investigations where the focus is on fundamental issues,

rather than studying the properties of a specific material. For this reason we will

further investigate the lattice dynamics of simple systems with the Lennard Jones

potential with the inclusion of the second-nearest-neighbor interactions.

Second-nearest-neighbor approximation

In a second approach we consider interactions between first- and second-nearest-

neighbor atoms, as illustrated in Fig. 2.7 (panel (a)).

Γ X

M

qy

qx

a) b)

y

x

Figure 2.7: Panel (a) The square lattice with first- and second-nearest-neighbor interactions.

Panel (b) The Brillouin zone of the square lattice is a square with side length 2π/r0. Important

high symmetry points are marked.

The force constant tensor for the interaction with the second-nearest neighbors is given

by Eq. (2.10) evaluated at the equilibrium distance
√

2r0 and reads

Φ(r0(x̂ + ŷ)) = Φ(−r0(x̂ + ŷ)) = −k
(

3
128

3
128

3
128

3
128

)
(2.54)

Φ(r0(x̂ − ŷ)) = Φ(−r0(x̂ − ŷ)) = −k
(

3
128

− 3
128

− 3
128

3
128

)
(2.55)

and according to the acoustic sum rule (2.31) the self interaction tensor is now:

Φ(0) = k

(
67
32

0

0 67
32

)
. (2.56)

The dynamical matrix now looks more complicate and also the off-diagonal terms are

non-zero. For this reason it is common to calculate the dispersion along high symmetry
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lines in the Brillouin zone. As mentioned, this last is a square with side length 2π/r0.

The midpoint is conventionally denoted by Γ, the ∆ axis leads to the midpoint X of

a side of the square, and the Σ axis to a corner M of the square, as illustrated in

Fig. 2.7 (panel (b)). The Z axes are the sides of the square X-M-X-... The dispersion

curves along the lines of high symmetry are shown in Fig 2.8 (panel (a)) in blue. There

are some changes from the result obtained for only nearest neighbors (plotted in red).

Now both branches have non-zero frequency and the two-fold degeneracy of the branch

along the Σ axis has been removed. The inclusion of the second-nearest-neighbor atoms

stabilizes the system and refines the results in some particulars.

Now we shall see what happens considering other interatomic potentials that sim-

ulate the bonds of the square lattice in a different way.

2.4.2.2 Mahan-Jeon bond-stretching potential

We consider a potential from stretching of directed bond lengths, used by Mahan and

Jeon [28] in a model for carbon nanotubes, as we will see later in Chapter 4. For

first-neighbor interactions it has the form:

U1 =
k1

2

∑

〈ij〉

∣∣∣δ̂ij(uj − ui)
∣∣∣
2

(2.57)

where δ̂ij is the unit vector connecting atom i and j and u denotes the displacements.

The sum is over all nearest neighbor bonds and k1 is the corresponding adjustable force

constant.

The lattice is not stable against shear forces if elastic forces only exist between

directly adjacent neighbors. Indeed, we obtain the same dispersion curve as in the case

of the Lennard Jones model. Thus, we will pass to consider the second-nearest-neighbor

approximation, as in Ref. [24]. The other potential U2 has the same form as U1, but

between second nearest neighbors with force constant k2. The total potential energy is

the sum of this two terms. The force constant tensor for the first neighbors reads

Φ(r0x̂) = Φ(−r0x̂) = −k1

(
1 0

0 0

)
(2.58)

Φ(r0ŷ) = Φ(−r0ŷ) = −k1

(
0 0

0 1

)
(2.59)
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Figure 2.8: Dispersion relation of a two dimensional square lattice along high symmetry lines

calculated with three different models. Panel (a): Lennard Jones model with first neighbors

(red) and second neighbors (blue). The branch indicated by the dashed red line remains

unchanged after including also the second neighbors, but it is not any more degenerate.

The relative weight of the second neighbors is 3/128. Panel (b): Mahan-Jeon (MJ) bond-

stretching model with first neighbors (red) and second neighbors (green, blue and orange for,

respectively, k2 = k1/3, k2 = k1/2 and k2 = 2k1/3). The dotted red line remains unchanged

passing from first- to second-nearest-neighbor approximation and is independent on k2/k1.

Panel (c): general bond-stretching model with first neighbors (red) and second neighbors

(green, blue and orange for k2 = k1/3, k2 = k1/2 and k2 = 2k1/3). In this model all the

branches are two-fold degenerate.
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and for the second neighbors:

Φ(r0(x̂ + ŷ)) = Φ(−r0(x̂ + ŷ)) = −k2

(
1
2

1
2

1
2

1
2

)
(2.60)

Φ(r0(x̂ − ŷ)) = Φ(−r0(x̂ − ŷ)) = −k2

(
1
2

−1
2

−1
2

1
2

)
(2.61)

and the self interaction tensor is

Φ(0) =

(
2k1 + 2k2 0

0 2k1 + 2k2

)
. (2.62)

They have the same functional form as those found with the Lennard Jones potential

(2.48, 2.49, 2.54, 2.55), but differ by a numerical factor. The deciding point is the

choice of the ratio k2/k1, which in the Lennard Jones model is given by 3/128 and is

fixed, while it is adjustable in the Mahan-Jeon (MJ) model. The dispersion relation

is plotted in Fig. 2.8 (panel (b)) for different values of k2/k1. Comparing with the

Lennard Jones model (panel (a)) we can state that the free adjustable ratio k2/k1 is

the relevant point and that the Lennard Jones model assumes for this ratio a fixed

value, which is lower than those used with the MJ model.

2.4.2.3 General bond-stretching potential

As last remark we choose also a stretching potential, but without the projection on the

unit vector as in Eq. (2.57):

U1 =
k1

2

∑

〈ij〉

|(uj − ui)|2 . (2.63)

The force constant tensor now has an easy form:

Φ(±r0x̂) = Φ(±r0ŷ) = −k1

(
1 0

0 1

)

(2.64)

Φ(±r0(x̂ + ŷ)) = Φ(±r0(x̂ − ŷ)) = −k2

(
1 0

0 1

)

(2.65)

Φ(0) =

(
4k1 + 4k2 0

0 4k1 + 4k2

)

. (2.66)

Comparing with the precedent potentials we note that the interaction tensor is now

diagonal and the only difference between first- and second nearest neighbor tensor ele-

ments are the factors k1 and k2. This facts are obvious since the direction given by δ̂ij
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in Eq. (2.57) is now missing and Eq. (2.63) is completely symmetric in x and y and also

in i and j. With this potential the lattice is stable already in first neighbor approx-

imation. We obtain two degenerate branches with non-zero frequency, as illustrated

in Fig. 2.8 (panel (c)). The inclusion of also the second neighbors does not change

substantially the results. The degeneracy remains, the only thing that changes is the

value at the X point, which increases with increasing k2/k1.

To conclude this Section, we can say that the three potentials taken in consideration

are more or less in good agreement with each other and provide the general shape of

the dispersion curves. We learned that a zero-frequency branch means instability which

can be removed by the inclusion of second-nearest-neighbor interactions. We can state

that the potential (2.63), needing only the first neighbors for stability, provides a simple

and fast method to find a general overview of the dispersion. However, it does not take

into consideration the particular geometric location of the neighbor atoms, since it has

no parameter that specifies a direction, and because of its simplicity it is not able to

remove the degeneracy of the branches.

For the more complicated lattice of graphene this is a clear disadvantage and the

potential (2.57) provides a much better description without degeneracy. We will see in

the next Chapter that a stretching potential alone is not able to describe a complicated

lattice such as graphene and that it has to be accompanied by a bond-bending potential

that takes rise of angular forces.
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Chapter 3
Phonons in graphene

For investigation of graphene, graphite, or carbon nanotubes it is often desirable to have

a force constant parameterization for fast—yet reliable—calculations. In this Chapter

we deal with two main force-constant approaches: the valence-force-field model and the

direct parameterization of the diagonal real-space force constants up to the 4th nearest

neighbor. In many model calculations, the force-constant parameters for graphene are

empirically determined by fitting experimental data. We perform, instead, a parameter

fit to ab initio dispersion relations.

3.1 General observations

3.1.1 The dynamical matrix

The graphene honeycomb lattice consists of two hexagonal sublattices with respectively

atoms of type A and B (see Sec. 1.1). Since there are two carbon atoms in the unit

cell, we must consider 3r = 6 degrees of freedom. The secular equation to be solved is

thus a 6 × 6 dynamical matrix. The dynamical matrix D(q) is constructed using the

site representation and is written as

D(q) =

(
DAA DAB

DBA DBB

)

(3.1)

where each block Dτ,τ ′

is a 3× 3 matrix describing the coupling for the τ and τ ′ atoms

within the unit cell. As mentioned the dynamical matrix is symmetric. Figure 3.1

shows the neighbor atoms up to fourth nearest neighbors for atoms of type A and

B: for an A atom, the three nearest-neighbor atoms are B1, B2, and B3 and their

contributions to D(q) are contained in DAB. The second nearest neighbors are six

37
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Figure 3.1: Nearest-neighbor atoms for an atom of type A (panel (a)) and B (panel (b)).

The atoms from 1st to 4th neighbors are marked by open circles, solid squares, open squares

and open hexagons, respectively. The circles connect atoms of the same neighbor order (taken

from Ref. [13]).

atoms of type A, denoted by solid squares. As concerns the self interaction tensor,

they contribute to DAA.

Now the important point is how to construct the force constant tensor. The general

form of the force constant tensor for the interaction of the atom (n, τ) with the atom

(m, τ ′) in the graphene sheet is:

Φ(R0
n,τ − R0

m,τ ′) =




a b 0

c d 0

0 0 e



 . (3.2)

The coordinate system is chosen such that x is the longitudinal coordinate (along

the line connecting the two atoms), y the transverse in-plane coordinate, and z the

coordinate perpendicular to the plane. The block-diagonal structure of the tensor

reflects the fact that in graphene the in-plane and out-of-plane vibrational modes are

completely decoupled from each other. We will see how to get the force constants in

the next Section, but first we introduce the concept of bond-bending forces, which play

a relevant role in the graphene lattice.

3.1.2 Bond-bending forces

In Sec. 2.4.2 we studied the square lattice within three simple force-constant models,

but considering only bond-stretching forces, which act in case of variations of the bond

length. We saw that using a model that includes only first nearest neighbors, the
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Figure 3.2: Schematic representation of nearest-neighbor forces: a) two-body force (bond

stretching), b) three-body force (bond bending).

square lattice results unstable against shear strain along the axis directions. This

problem can be avoided considering bond-bending forces as well, which are angular

forces that try to preserve the equilibrium bond angle. We already mentioned them in

Sec. 2.4.1. They are three-body forces because of involving the three atoms that form

the bond angle. Figure 3.2 shows a schematic representation of bond stretching and

bond bending. The two-body force constant should depend only on the interatomic

distance, whereas the three-body force constant depends in general on the two involved

bond lengths and on the enclosed angle θ. Force-constant models including such terms

were proposed by Kirkwood [29] and Keating [30] and then refined and adapted to

various systems by many other authors. For a correct description of graphene, bond-

bending forces are of central importance. In Ref. [31] Hass directly compared a two-

parameter Kirkwood model with a two-parameter Keating model (which we will see

later) applied to graphene.

3.2 Valence-force-field models

In the valence-force-field (VFF) approach, all interatomic forces are resolved into bond-

stretching and bond-bending forces. Forces between atoms arise from changes of the

electronic energy due to atomic displacements from the equilibrium configuration dur-

ing the vibrations. Because of the directional properties of orbitals, force act along

the valence bonds and bond angles. The VFF model gets the parameters of the force-

constant tensor through the introduction of spring constants that determine the change

in potential energy upon different deformations. In our case, the spring constants reflect

the fact that a sp2-bonded system tries to preserve its planar geometry and equilibrium

bond angles.

There are two primary advantages of the VFF model. Firstly, because all distortions

are described in terms of bond lengths and angles, the model is automatically rota-
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tionally invariant so that serious errors that may arise in the ordinary force-constant

approach are avoided [30]. Secondly, in crystals in which atom-pair bonds play an

essential role, the VFF model is the most natural description of interatomic forces.

Therefore, we expect that the VFF model involves the smallest possible number of

parameters.

3.2.1 Keating model

A useful and also one of the simplest special cases of the VFF model was proposed

by Keating [30]. It has two terms corresponding to bond-stretching and bond-bending

contributions to the total energy. Such terms have been included by other authors in

model calculations for graphene and graphite [31-37] or other materials [38, 39]. The

weak interlayer interactions in crystalline graphite have small effects on the vibrational

spectrum, allowing us to compare directly results obtained for graphene and graphite.

In this Section we calculate the dispersion relations for graphene with a two-parameter

Keating model as presented by Hass [31].

The key idea of the Keating model is to write the potential energy of the solid as a

sum of two terms that are positive definite scalars constructed from the bond vectors

Xij = Ri −Rj that connect an atom i to one of its nearest neighbors j. The first term

is of bond stretching and describes deviations from the equilibrium bond length d0,

while the second term is of bond bending and denotes deviations from the equilibrium

bond angle θ0 = 120◦. Following that idea, the potential energy of sp2-bonded carbon

can be written as:

UKeat =
kKs1

8d2
0

∑

〈ij〉

(
Xij ·Xij − d2

0

)2
+
kKb

2d2
0

∑

〈ijk〉

(
Xij ·Xik − d2

0 cosθ0
)2

(3.3)

The first sum is over all nearest-neighbor bonds and the second sum is over all pairs of

such bonds sharing one atom. kKs1 and kKb are adjustable parameters that describe the

bond-stretching and bond-bending restoring forces, where K, s, and b indicate Keating,

stretching, and bending terms, respectively, and 1 stands for first nearest neighbors.

Figure 3.3 shows the phonon-dispersion curves resulting from this model along high-

symmetry lines of the Brillouin zone of graphene. We obtain four non-zero branches:

For both acoustic and optic ones we have a transversal (TA and TO, respectively) and

a longitudinal (LA and LO) mode, representing all in-plane vibrations.

The valence force parameters are taken as kKs1 = 4.409 mdyn/Å and kKb =

0.754 mdyn/Å 1 [31]. They were constrained to give a zone-center optic-mode fre-

quency of 1585 cm−1 and a TA mode at M of 800 cm−1, in order to fit the experimental

11 mdyn/Å= 102 N/m
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Figure 3.3: Phonon-dispersion

curves for the in-plane vibra-

tions of 2D graphene in the

Keating model. In three dimen-

sions the system is unstable,

because the two out-of-plane

modes have zero frequency.

The valence-force parameters

are kKs1 = 4.409mdyn/Å and

kKb = 0.754mdyn/Å [31].

frequencies. The last one is a pure bending mode whose frequency is determined en-

tirely by kKb.

The most important statement is that this model does not reproduce at all the

out-of-plane vibration modes, indeed the responsible two missing branches have zero

frequency in the whole Brillouin zone. We expect only in-plane vibration modes because

the force constant tensor has the generic form:

Φ(R0
n,τ −R0

m,τ ′) =




a b 0

c d 0

0 0 0



 (3.4)

where a, b, c, d are values depending on kKs1 and kKb. This means that the bond-

stretching and bond-bending terms of the Keating model are not able to describe

variations in energy when one atom moves out of the graphene plane, in z direction.

Nevertheless, the Keating model has been used frequently because it gives reasonable

results for the in-plane modes and is extremely simple. However, we will see that also

for this modes there are still differences with the experimental data and the ab initio

results.

3.2.2 Mahan-Jeon model applied to graphene

In this Section we analyze another VFF model which was developed by Mahan and

Jeon for the special case of carbon nanotubes [28]. Before considering the application to

the latter, we want to see if the same model provides suitable results also for graphene.

It is more sophisticated than the simple two-parameter Keating model, therefore, we

expect more detailed results.
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curves in the Mahan-Jeon (MJ)

model. The relative weights of the

three parameters is set to kMs1 = 1,

kMs2 = 0.12 and kMb = 0.024, as

in Ref. [28] for the (10,10) CNT.

The frequencies in units of cm−1

are given by the square root of the

eigenvalues of the dynamical matrix

multiplied by a factor 1600/
√

3.

The Mahan-Jeon (MJ) model is characterized by three potential-energy terms: The

first two take into account the bond stretching with the first- and the second- nearest-

neighbor atoms, respectively, the latter is related to the bond bending. We already

introduced the bond-stretching potential in the example of the square lattice (see

Eq. (2.57)). For the nth nearest neighbors it has the form:

Un =
kMsn

2

∑

〈ij〉

∣∣∣δ̂ij · (uj − ui)
∣∣∣
2

(3.5)

where δ̂ij is the unit vector connecting atom i and j. The sum is over all nearest-

neighbor bonds. Since we deal with interactions up to the second nearest neighbors,

we have to consider the potentials U1 and U2 with the parameters kMs1 and kMs2,

respectively. The bond-bending term has the form:

U3 =
kMb

2

∑

j

∣∣∣∣∣

3∑

i=1

n̂ij · (uj − ui)

∣∣∣∣∣

2

(3.6)

where the second sum goes over the first neighbor atoms of atom j. The vector n̂ij =

x̂ × δ̂ij points in a direction perpendicular to the graphene plane, at the midpoint of

the bond between the two atoms. The force constant tensor has the generic form as in

Eq. (3.2) with a, b, c, d depending on kMs1 and kMs2, while e depends on kMb. From this

we can state immediately that only the bond-bending term contributes to the out-of

plane modes, as expected.

Figure 3.4 shows the resulting phonon-dispersion relation. The dispersion relation

comprises three acoustic (A) branches and three optical (O) branches. The modes affili-

ated with out-of-plane (Z) motion are considerably softer than the in-plane longitudinal

(L) and transverse (T) modes. The parameters kMs1 and kMs2 define the dispersion of
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LA, LO, TA and TO modes, while kMb defines ZA and ZO modes. The three branches

which originate from the Γ point of the Brillouin zone are acoustic modes: In order

of increasing energy there are an out-of-plane ZA mode, an in-plane tangential TA

(bond-bending) mode and an in-plane radial LA (bond-stretching) mode. For q = 0

these modes have zero frequency, which corresponds to translations of the graphene

sheet along the three orthogonal axes. While the TA and LA modes display the nor-

mal linear dispersion around the Γ point, the ZA mode shows a q2 energy dispersion

which is explained in Ref. [13] as a consequence of the D6h point-group symmetry of

graphene. Another consequence of the symmetry are the linear crossings of the ZA/ZO

modes and the LA/LO modes at the K point.

We will see later that there are great differences between the dispersions obtained in

the MJ model and the ab initio results. The MJ model was developed and optimized

for carbon nanotubes and fails in the case of graphene. Also changing the relative

weights of the parameters kMs1, kMs2 and kMb the results do not improve.

3.3 Direct parametrization of the force constants

The model proposed by Saito and coworkers in Ref. [13] consists in the direct

parametrization of the diagonal real-space force constants including up to fourth near-

est neighbor interactions (4NNFC approach). It was developed by Jishi and coworkers

[40,41] for planar graphene based on the experimental data of graphite and further also

adapted to carbon nanotube geometries.

In the 4NNFC approach the force-constant tensor has the generic form as in

Eq. (3.2), but with the additional simplifying assumption that, when writing Φ in

a system of coordinates where x is parallel to the bond, the off-diagonal elements b

and c can be neglected. Using a new notation, the force constant tensor describing the

interaction between an atom and its nth nearest neighbor atom on the x axis has the

form:

Φ =




φ

(n)
r 0 0

0 φ
(n)
ti 0

0 0 φ
(n)
to



 . (3.7)

where φ
(n)
r , φ

(n)
ti , and φ

(n)
to represent the force-constant parameters in the radial (bond-

stretching), in-plane, and out-of-plane tangential (bond-bending) directions of the nth

nearest neighbors. Due to the fact that the off-diagonal elements are zero, a longitudinal

displacement of an atom can only induce a force in longitudinal direction towards its nth

neighbor and a transverse displacement can induce only a transverse force. Figure 3.5
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Figure 3.5: An atom A and

its first nearest neighbors B1,

B2, and B3. φr, φti, and φto

represent forces in the radial,

in-plane, and out-of-plane direc-

tions (taken from Ref. [13]).

shows an atom of type A with its three nearest neighbor atoms B1, B2, and B3 and

a schematic representation of the force constants between atom A and B1. The radial

direction corresponds to the direction of the bonds and the two tangential directions

are perpendicular to the radial direction.

The force-constant tensors for the other nth nearest neighbor atoms are obtained

by rotating the tensor in Eq. (3.7). For example for first nearest neighbors (n = 1) we

obtain the force-constant tensor Φ(A,Bp) between atom A and Bp (p = 2, 3) by

Φ(A,Bp) = U−1
z (θp) Φ(A,B1) Uz(θp) (3.8)

where Uz(θp) is a unitary rotation matrix around the z axis:

Uz(θp) =




cos(θp) sin(θp) 0

− sin(θp) cos(θp) 0

0 0 1



 . (3.9)

For example, for atom B2 the rotation angle is θ2 = 2π/3. Considering the force-

constant tensor of the nth-nearest-neighbor atom, we note that they are not always

located on the x axis, so that we can not assume an initial tensor as given by Eq. (3.7).

This is for example the case of the 2nd and 4th neighbor atoms in graphene. We can

get the tensor constructing first a tensor for a virtual atom at the same distance but

on the x axis, and then rotating it by the appropriate angle.

As we have seen in the example of the square lattice (Sec. 2.4.2), the inclusion of

more than only first-nearest-neighbor atoms improves a lot the results, because it takes

more and more into account the long-range character of the dynamical matrix. Saito

and coworkers considered interactions up to 4th nearest neighbors, in order to describe

also the twisted motion of four atoms [13]. Thus, there are twelve free parameters

to determine. We calculate the dispersion relation with the parameters proposed by

Jishi and coworkers [41], shown in Table 3.1. Those have been obtained by fitting

experimental phonon-dispersion relations [37].
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Radial Tangential

φ
(1)
r = 36.50 φ

(1)
ti = 24.50 φ

(1)
to = 9.82

φ
(2)
r = 8.80 φ

(2)
ti = -3.23 φ

(2)
to = -0.40

φ
(3)
r = 3.00 φ

(3)
ti = -5.25 φ

(3)
to = 0.15

φ
(4)
r = -1.92 φ

(4)
ti = 2.29 φ

(4)
to = -0.58

Table 3.1: Force-constant

parameters of Ref. [41]

for graphene in units of

104 dyn/cm = 10 N/m.
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Figure 3.6: The phonon-

dispersion curves for graphene in

the fourth-nearest-neighbor ap-

proach (4NNFC), using the pa-

rameters of Table 3.1

Figure 3.6 shows the resulting phonon-dispersion curves of a graphene sheet. As in

the case of the MJ model, we obtain a quadratic dispersion for the out-of-plane acoustic

phonon branch. In the next Section we will make a direct comparison with the results

of ab initio calculations and then try to adapt the parameters of Tab 3.1 in order to

fit these values.

3.4 Comparison with ab-initio calculations

First-principles calculations are generally in good agreement with the experimental

data [37,42-44] since the long-range character of the dynamical matrix is properly

taken into account. The latter fact limits the validity of force-constant approaches

that take into account only interactions with few neighboring atoms. In this Section

we show that the 4NNFC model yields a excellent fit for the low-frequency modes and

a moderately good fit for the high-frequency modes.

The first ab initio calculations for graphite were done in the framework of density-

functional perturbation theory by Pavone and coworkers [45] and recently in local-

density approximation [46-48] and generalized-gradient approximation [42, 49]. Fig-

ure 3.7 shows the ab initio phonon-dispersion relation of graphene resulting from cal-

culations done by Bohnen and Heid [50]. These calculations introduce considerable
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Figure 3.7: Phonon-

dispersion relation of

graphene calculated

with an ab initio

approach [50].

qualitative changes in the behavior of the high-frequency branches as compared to the

force-constant fits. In particular, these calculations establish a crossing of the longi-

tudinal and transverse optical branches along the Γ-K as well as the Γ-M direction.

Another important feature is that the graphite phonon branch that corresponds to the

longitudinal high-energy optic mode (LO) has a local minimum at the Γ point. This is

usually referred as ”overbending”, since the local maxima thus appear at some general

points of the Brillouin zone around the Γ point. A similar overbending has been found

also for diamond: In that case a frequency shift of about 30 cm−1 above the Γ point

frequency was found. Pavone and coworkers explained it as due to strong bending

forces between the in-plane atoms [51]. For graphene the overbending is so strong that

the LO mode decreases rapidly, crossing in both directions the TO mode.

A direct comparison between the force-constant models and the ab initio results

yields as an immediate result that the two-parameter Keating model and the MJ model

applied to graphene are insufficient to describe accurately the dispersion relations of

graphene. They provide only the general shape of the dispersion curves, but fail to

reproduce the correct slope and the correct frequency values. A combination of the

two models to a new four-parameter model provides better results: Taking the three

MJ potentials and in addition the bond-bending term of the Keating model (second

term in Eq. (3.3)), we get the dispersion curves of Fig. 3.8 (panel (a)).

We probed also another combination of the two models: the bond-stretching term

is taken from Keating and includes first- and also second-nearest neighbors, the bond-

bending term is given by the sum of the Keating and the MJ-bond-bending forces. The

results are shown in Fig. 3.8 (panel (b)). The behavior of the LA and TA branches is

almost satisfactory, and especially in the model of Fig. 3.8 (panel (a)) also the behavior

of the LO and LA branches along the M-K direction is correctly described. The out-of-
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Figure 3.8: Dispersion relation of graphene calculated with a model calculation (blue lines).

For comparison are shown also the ab initio curves (dotted red lines). The model calculation

is given by a combination of the MJ and the Keating potentials. Panel (a): MJ potentials

and the bond-bending term of Keating. The relative weights of the interactions were set to

kMs1=0.082, kMs2=0.072, kMb=0.037, and kKb=0.07. The results have to be multiplied by

a factor 1600/
√

3. Panel (b): The Keating potentials of bond stretching (for 1st and 2nd

nearest neighbors) and bond bending in addition to the MJ-bond-bending potential term.

The parameters are given by kKs1=5.1, kKs2=0.2, kKb = 0.33, and kMb= 0.22 [mdyn/Å].

plane modes ZO and ZA are determined only by the bond-bending term of Mahan and

Jeon. The general behavior is correct, but the gap between the two branches in the

Γ point and in the M point is too large. Both models still fail in describing correctly

the high-energy optical modes, in particular the LO branch. In order to obtain better

results one has to include more parameters, as in the model of Aizawa et al. [37],

Gartstein [35], or the recent bond-charge model of Mahan and Jeon [34]. But due to

the fewer number of parameters, the VFF models can not compete in accuracy with

the 4NNFC approach. We turn now to this approach.

In our next attempt we consider the 4NNFC model with twelve free parameters. The

purpose is to adapt the parameters in order to fit the ab initio dispersion relation. Saito

et al. proposed new parametrizations in Ref. [52, 53], but only the higher-frequency

region around the K point is different from that in Fig. 3.6 and does not reproduce at

all the crossings of the LO and TO branches along the Γ-M and Γ-K lines. As a starting

point for our new parametrization we consider the force-constant tensors obtained by

the ab initio calculations of Bohnen and Heid [50]. It is possible to compare them di-

rectly with the force constant tensors of the 4NNFC model. A remarkable point is that

for the ab initio tensors also the off-diagonal terms (b and c in Eq. (3.2)) are non-zero.

Taking into account the parameters of Bohnen and Heid we adapt the twelve parame-

ters for the 4NNFC approach. We obtain a good fit for the set of parameters listed in
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Table 3.2. We follow Gartstein [35] choosing the in- and out-of-plane tangential force

constants φ
(n)
t so as to satisfy φ

(1)
t +6φ

(2)
t +4φ

(3)
t +14φ

(4)
t = 0. This equality is required

by the rotational invariance of the graphene plane, and the original parameters of Saito

and coworkers do not obey this rule. Figure 3.9 shows the dispersion relation resulting

from the original parametrization (panel (a)) and from our new parametrization (panel

(b)). The resulting curves are superposed to the ab initio dispersion, for direct com-

parison. The 4NNFC model with our force constants of Table 3.2 gives good results

for the general behavior of the dispersion relation. In particular it gives a good fit of

the slope of the acoustic modes (which in turn determine the specific heat), but cannot

properly describe the dispersion of the high-frequency modes. Neither parametrization

reproduces the initial upward curvature (overbending) of the LO branch away from Γ

that is seen in both the experimental data and the ab initio dispersions. Our fit of

the 4NNFC model yields a major improvement referring to the crossing of the LO and

TO branches along the Γ-M and Γ-K directions and leads to a qualitatively correct

ordering of the LA and LO modes along the line M-K. For a very high-accuracy fit,

a fourth-nearest-neighbor approach is not enough and we need to consider also more

distant neighbor atoms. In particular, the TO phonon at the K-point is very sensitive

to the parametrization and can be described accurately only if the long-range character

of the dynamical matrix is properly taken into account.

Of particular interest is the nature and range of the force-constant tensor. Firstly,

we consider the influence of single parameters on the shape of the dispersion curves.

The out-of-plane branches (ZA, ZO) are determined only by the tangential out-of-

plane constants φ
(n)
to , which is due to the decoupling of the in-plane and out-of-plane

modes, as mentioned. Indeed setting φ
(n)
to = 0 ∀n, the dispersion shows two zero-

frequency branches. The first-neighbor constants determine the overall scaling of the

whole phonon dispersion curves. In particular φ
(1)
r can be chosen so as to reproduce

graphene experimental LO and TO optical frequencies at q = 0, while φ
(1)
to fixes the

value of the ZO branch at q = 0. φ
(1)
r and φ

(1)
ti determine the behavior of the TA and

LO branch along the M-K direction. φ
(3)
r has an influence in particular on the initial

slope of the LO branch, which increases with increasing |φ(3)
r | and the TA branch, in

Radial Tangential

φ
(1)
r = 41.8 φ

(1)
ti = 15.2 φ

(1)
to = 10.2

φ
(2)
r = 7.6 φ

(2)
ti = -4.35 φ

(2)
to = -1.08

φ
(3)
r = -0.15 φ

(3)
ti = 3.39 φ

(3)
to = 1.0

φ
(4)
r = -0.69 φ

(4)
ti = -0.19 φ

(4)
to = -0.55

Table 3.2: New parametriza-

tion for the force constants

of graphene in units of

104 dyn/cm = 10 N/m.
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Figure 3.9: Dispersion relation of graphene calculated with the 4NNFC approach (green

and blue solid lines) and the corresponding vibrational density of states (DOS). For compar-

ison are plotted also the ab initio results (dotted red lines). Panel (a): 4NNFC approach

using the parameters of Ref. [41], listed in Table 3.1. Panel (b): 4NNFC approach with

our parametrization, given in Table 3.2. It reproduces most of the features of the phonon

dispersion relation of graphene. Notable exceptions are the TO mode at K and the missing

overbending of the LO branch. See text for details.
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Figure 3.10: Dispersion relation for graphene calculated through the direct parametrization

of the diagonal force constants, shown with increasing number n of nearest neighbor atoms

included (n = 1 . . . 4). All curves are plotted using the parametrization of Table 3.2, setting

φ(m) = 0 for m > n.

particular around the M point, which lowers with increasing |φ(3)
r |.

As can be seen, the magnitude of the force constants falls off very rapidly when

moving to more distant atoms. Because of this rapid decay, it is tempting to include

only few nearest neighbors for the determination of the dynamical matrix. For this

reason, starting from first nearest neighbors, it is interesting to observe the changes

when including step for step the next neighbor atoms. Figure 3.10 shows the resulting

curves from first up to fourth nearest neighbors. A first nearest neighbor approximation

alone gives unsatisfying results in particular for the optical branches. The crossing

point of the ZA and ZO branches at K has to high frequency and the ZA mode has

linear dispersion around Γ. The inclusion of the second neighbor atoms improves a

lot the behavior of the optical LO and TO branches, and of the LA mode between

M and K. Neglecting the off-diagonal terms of the ab initio force-constant tensor for
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second nearest neighbors, we obtain also the crossing of the LO and TO branches.

The third neighbors contribute in lowering the TO branch, which is the most delicate

matter and is difficult to fit correctly within a force constant model. At the same time

the other modes are shifted to higher frequencies, in particular the TA mode. It is

interesting to note that in a approximation up to third nearest neighbors only, the ZA

branch shows a linear dispersion. The inclusion of also the fourth nearest neighbors is

needed to obtain the correct q2 dependence. This is the main effect of fourth neighbors,

furthermore another effect is the lowering of the out-of-plane branches. Instead there

are no changes in the high frequency region. For further improvements longer ranged

interactions need to be included.
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Chapter 4
Phonons in carbon nanotubes

A carbon nanotube can be thought of as a single graphene sheet that is wrapped into

a cylinder. Wrapping the sheet has two major effects on the phonon band structure.

Firstly, the phonon spectrum of CNTs displays quantum size effects, since the 2D

phonon bands of graphene fold into a set of quantized 1D subbands of the nanotube.

Secondly, the cylindrical shape of the tube renders it stiffer than the sheet, changing

the dispersion of the lowest-lying modes. First tentatives for calculating the phonon

dispersion of carbon nanotubes were to construct a spring and mass model for a single

sheet of graphite and use the same forces to calculate the phonons in a nanotube.

Unfortunately this does not work. The fact that the bonds are bent, in a nanotube,

means that the force constants change not only in value, but also in symmetry.

In Sec. 4.2 and 4.3 we present two methods for calculating the phonon dispersions

of both armchair and zigzag nanotubes. Particular attention is drawn in Sec. 4.4 to the

important Raman-active radial breathing mode and to its diameter dependence. Fi-

nally, in Sec. 4.5 we focus on strong Raman-active modes and show on explicit examples

how the atoms do effectively move.

4.1 From graphene to carbon nanotubes

In a first approximation the phonon dispersion of carbon nanotubes can be found

theoretically by zone folding the graphene dispersion. The folding is obtained by slicing

the graphene Brillouin zone in the appropriate direction. For details we refer to the

books of Maultzsch and coworkers [12] and Saito and coworkers [13]. This approach

works reasonably well and is applicable for almost all the phonon modes of a carbon

nanotube. However, it does not always give the correct dispersion relation for a carbon

nanotube, especially in the low frequency region. Firstly, the out-of-plane acoustic (TA)

53
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mode of graphene, which for q = 0 describes translations along the axis perpendicular

to the sheet, transforms into a mode in which all the atoms of the nanotube move

radially, with non-zero frequency at the Γ point. This mode is called radial breathing

mode and cannot be reproduced using the zone folding scheme. Secondly, there should

be two modes, called flexure modes, with zero frequency corresponding to translation

of the tube perpendicular to the tube axis. This corresponds to a linear combination of

both in-plane and out-of-plane graphene-derived modes. These modes do not couple in

graphene, but do couple to each other in a nanotube, forming an acoustic mode. Since

the zone folding procedure neglects any effects of the cylinder geometry and curvature

of the tube walls, results obtained by zone folding have to be used with great care.

First calculations of the phonon dispersion in carbon nanotubes have been accom-

plished either by the zone-folding method with correction of the dynamical matrix in

order to obtain the two acoustic branches (Jishi et al. [41]) or by a force-constant model

with a modification of the force constants in order to fulfil the rotational sum rule and to

obtain the torsional-acoustic branch (Saito et al. [18]). In the latter work it is obtained,

however, that the four acoustic modes have non-zero slope at the origin. In the last

years have been published valence force-field model [28,35,36,54,55], tight binding [56]

and ab initio [46, 48, 57, 58] phonon dispersions of a few carbon nanotubes. The full

phonon dispersion of carbon nanotubes could not be determined experimentally, so far,

because single crystals of single-wall nanotubes of the same chirality do not exist. Only

Γ-point phonons are probed by conventional Raman scattering. First-principles calcu-

lations of the phonon dispersion in carbon nanotubes are rare and mostly restricted to

achiral tubes because of the large number of atoms in the chiral unit cell.

4.1.1 Nanotube unit cells

The unit cell of a carbon nanotube in real space is a finite size cylinder defined by chiral

and translational vector, which we introduced in Sec. 1.2. The number of atoms per

unit cell is strongly chirality-dependent, indeed armchair nanotubes have less number

of atoms and chiral nanotubes have the most. For better understanding we give some

examples of the dimensions in Table 4.1. We denote the 2N atoms in the unit cell

as Ai and Bj with i, j = 1 . . . N , where the N Ai (or N Bj) atoms are geometrically

equivalent to each other. In Fig. 4.1 are shown the unit cells of an armchair and a

zigzag carbon nanotube. We can emphasize the different shape and also the length of

the unit cell for different types of CNTs with the same number of atoms in the unit

cell. The latter is defined by the translational vector |T| (defined in Sec. 1.2) and

takes the value a for every armchair tube and
√

3a for zigzag tubes, where a =2.46 Å is
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Type (n,m) atoms/unit cell diameter (Å)

armchair (2,2) 8 2.7

(10,10) 40 13.6

zigzag (4,0) 16 3.1

(10,0) 40 7.8

chiral (3,1) 52 2.8

(10,9) 1084 12.9

Table 4.1: Structural properties of some examples of carbon nanotubes. The smallest nano-

tube that has been observed has a diameter of 3 Å [59]. There are three possible structures

for it: (2,2), (4,0), or (3,1). Theoretical calculations of formation energies indicate that (n, n)

armchair tubes for n = 8 − 12 are the most stable SWCNT species in their diameter range.

the lattice constant of graphene. Since we have 2N carbon atoms in the basis, the

dynamical matrix to be solved becomes a 6N × 6N matrix. Due to the large dimen-

sion of the dynamical matrix the diagonalization can be performed only numerically.

The phonon-dispersion curves consist of 6N branches resulting from a vector displace-

ment of each carbon atom in the unit cell. The big 6N × 6N dynamical matrix is

composed by (2N)2 small 3 × 3 matrices, which couple only two atom types and are

indicated as DAi,Bj, DAi,Aj, DBi,Aj, and DBi,Bj . These are the Fourier transforms of

the force-constant tensors of pairs of atoms. Within the approximation of short-range

interactions, we need therefore, for every single atom in the unit cell, the force-constant

tensors describing the interactions with its nearest neighbors.

3a

B’

A

B’

A

B

O

B

O

(3,3) CNT

(5,0) CNT

a

Figure 4.1: Unit cells of a (3,3)

CNT and a (5,0) CNT: the rect-

angle has to be rolled up so

that O coincides with A and

B with B’, forming a finite-size

cylinder. For these two exam-

ples the diameters are 4.1 Å and

3.9 Å, respectively. The circles

indicate the atoms of the basis.

The length of the unit cell is a

for armchair CNTs and
√

3a for

zigzag CNTs, where a = 2.46 Å.
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4.2 Armchair nanotubes

In this Section we discuss the specific case of armchair (n, n) nanotubes. To describe

the interaction between the atoms we consider the two force-constant models already

introduced for graphene: The three-parameter model of Mahan and Jeon (MJ) and

the fourth-nearest-neighbor approach (4NNFC) with the direct parametrization of the

real-space force constants.

4.2.1 Mahan-Jeon model for carbon nanotubes

This force-constant model presented by Mahan and Jeon [28] for carbon nanotubes

contains just three adjustable parameters: two for first- and second-nearest-neighbor

directed bonds (with force constants k1 and k2), and a third for radial bond-bending

interactions (k3). The three potential-energy terms have been introduced in Sec. 3.2.2,

Eq. (3.5 - 3.6). In the following, we use Mahan’s notation where the tube axis is parallel

to the z direction. The vector n̂ij in the expression for bond-bending interactions points

in a radial direction with respect to the tube axis, at the midpoint of the bond between

two atoms. It is given by n̂ij = ẑ × δ̂ij .

It is convenient to use a systematic coordinate labeling, defined as follows: The

unit cell of an armchair (n, n) tube has n atoms of type A and n of type B. In two

dimensions, the equilibrium positions of the atoms in the unrolled unit cell is given in

terms of the graphene lattice vectors. Considering a graphene sheet in the xz plane,

the lattice vectors are given by a1 = a/2 (
√

3, 0, 1) and a2 = a/2 (
√

3, 0, −1). For an

armchair nanotube it results convenient to define the atom coordinates of the τth atom

by R
(0)
τ ≡ R

(0)
ml = la1 + m(a1 + a2), with m and l integers. We use this notation also

after rolling the sheet into a cylinder: Now m defines the location of atom A along the

circumference, while l denotes the position along the z axis of the nanotube. Figure 4.2

(panel (a)) shows it in two dimensions. When located on a cylinder surface, we can

define an angle θ1 along the circumference between an A and B atom, and an angle θ2

between A and B atoms that are first neighbors, but displaced along the z direction.

It is shown in Fig. 4.2 (panel (b)) where R is the radius of the tube and d0 = a/
√

3

is the distance between neighboring atoms A and B. The angles θ1 and θ2 are easily

obtained as a function of R and d0. Defining θml = (θ1 + θ2)(2m + l), the cartesian

coordinates of atom A and of its first nearest neighbors in the nanotube are given by:

R
(0)
A,ml = [R cos(θml), R sin(θml), cl] (4.1)

R
(0)
B1,ml = [R cos(θml + θ1), R sin(θml + θ1), cl] (4.2)
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Figure 4.2: Panel (a): Atom equilibrium coordinates R0
ml = la1 +m(a1 +a2) in an armchair

nanotube. z denotes the tube axis. Panel (b): View of a cut through the nanotube, showing

the angles between Atom A and its first nearest neighbors B1, B2, and B3.

R
(0)
B2,m−1,l+1 = [R cos(θml − θ2), R sin(θml − θ2), c(l + 1)] (4.3)

R
(0)
B3,m,l−1 = [R cos(θml − θ2), R sin(θml − θ2), c(l − 1)] (4.4)

where c =
√

3d0/2. The six second nearest neighbors of atom A,ml are situated at

R
(0)
A,m,l+1, R

(0)
A,m−1,l+2, R

(0)
A,m−1,l+1, R

(0)
A,m,l−1, R

(0)
A,m+1,l−2, and R

(0)
A,m+1,l−1.

In Ref. [28] Mahan and Jeon introduced collective coordinates, with two quantum

numbers: one is the wave vector q along the tube axis and the other quantum number α

expresses the angular dependence around the tube, such as sin(αθ) or cos(αθ), where θ

is the polar angle around the tube. q is continuous in case of open boundary conditions,

while α takes the values α = 0,±1,±2, . . . ,±n/2 for a (n, n) CNT. The problem reduces

to a 6 × 6 set of equations to be solved, where each eigenvalue depends on α. Since α

takes n values, one gets 6n branches (e.g. 60 in a (10,10) CNT). These are only half

of the total number of branches that are expected. The full dispersion is obtained by

folding the branches once in the middle of the Brillouin zone. In our calculations we

directly set up the full 6N × 6N dynamical matrix and proceed by solving the secular

problem.

4.2.2 Fourth-nearest-neighbor approach

We introduced this frequently used force constant model in Sec. 3.3. It was first devel-

oped for planar graphene based on the experimental data for graphite and then adapted
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Figure 4.3: Rotation of the chemical bond A1 − Bp from the two-dimensional plane of

graphene to the three-dimensional coordinates of the nanotube. Panel (a) and (b) show how

to rotate the bond A1−B1: A1 is fixed on the x axis and atom B1 is first rotated by π/6−ϑ

around the x axis (panel (a)) and then by an angle θ1/2 around the z axis (panel (b)). ϑ is the

chiral angle of the nanotube. This operation puts the B1 atom on the cylindrical surface of

the nanotube. The force-constant tensor Φ(A1,Bp) in the tube coordinate system is obtained

by the corresponding rotation of the graphene force-constant tensor. The tensors for all the

other atoms of the basis can be generated by rotating that of atom A1 by the corresponding

angle Ψi around the nanotube axis (panel (c)).

for nanotube geometries [18,13]. In this Section we present calculations of the phonon

dispersion in carbon nanotubes that relied on the earlier determined force constants of

graphene, which, as mentioned, are not correct for some parts of the optical phonon

dispersion.

As we already showed, the dynamical matrix is composed by (2N)2 small 3 × 3

matrices, that are the DAi,Bj, DAi,Aj, DBi,Aj , and DBi,Bj (with i, j = 1 . . .N), and

to construct it we need the force-constant tensor for every single atom of the unit

cell. Fortunately, it is enough to calculate it once, for one atom, and then due to

the nanotube symmetry it is possible to evaluate it for the other atoms of the basis

with simple numerical methods. Firstly, it is necessary to calculate the force-constant

tensor of atom A1 for the interactions with up to fourth nearest neighbors. The tensor

of Eq. (3.7) describes the interaction between atoms in the plane and for nanotubes it

has to be adapted because of the curvature of the walls. For example, we consider the

interaction of atom A1 and B1, illustrated in Fig. 4.3 (panel (a)-(b)). We put atom A1

on the x axis and obtain Φ(A1,B1) by a first rotation of the tensor of Eq. (3.7) by π/6−ϑ
around the x axis (panel (a)) and then rotating the tensor by an angle θ1/2 around
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the z axis (panel (b)). Here ϑ is the chiral angle, defined in Sec. 1.2, which is zero for

armchair nanotubes, and θ1 is the angle between A1 and B1 around the circumference.

In the same way, we obtain the other tensors Φ(A1,Ap) and Φ(A1,Bp), where Ap and Bp

are within the fourth-neighbor distance.

As next step we can generate the force-constant tensors for all the other atoms of

the basis from those related to A1. For atoms of type A we must rotate the tensors of

atom A1 by an angle Ψi around the z axis of the nanotube:

Φ(Ai,Bp) = U−1
z (Ψi) Φ(A1,Bp−i+1) Uz(Ψi). (4.5)

Ψi is the polar angle between A1 and Ai around the circumference. See also Fig. 4.3

(panel (c)). If (p− i + 1) is negative or zero we use (N + p− i + 1) instead of it. For

atoms of type B we must rotate the tensors of atom A1 first by π around the x axis,

and then by Ψi around the z axis, as before:

Φ(Bi,Ap) = U−1
z (Ψi)U

−1
x (π) Φ(A1,Bp−i+1) Ux(π)Uz(Ψi) (4.6)

where Uz(ψ) and Ux(ψ) are defined as:

Uz(ψ) =




cosψ sinψ 0

− sinψ cosψ 0

0 0 1



 (4.7)

Ux(ψ) =




1 0 0

0 cosψ sinψ

0 − sinψ cosψ



 . (4.8)

The dynamical matrix is obtained by multiplying the force constant tensors obtained

above by exp(iqznT ), where n is the number of the unit cell in which atom A1 is

situated, and T = |T| is the modulus of the translational vector.

4.2.3 Detailed study for (10,10) CNTs

We proceed considering the results for a specific nanotube, a (10,10) CNT. This case

is particularly interesting because the majority of theoretical calculations choose this

tube as an example, motivated by the great amount of experimental data attributed to

this particular tube. The (10,10) CNT has 40 atoms in the unit cell and the dynamical

matrix has the dimension 120 × 120. The phonon dispersion consists of 120 branches.

We calculate the dispersion with the MJ model and the 4NNFC model with both

the parameters of Saito and coworkers (Table 3.1) and our parameters (Table 3.2).
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Figure 4.4: Contribution of every single potential-energy term of the MJ model to the

dispersion curves of a (10,10) CNT. The curves are plotted using respectively: panel (a) bond

stretching for first-nearest-neighbor atoms, panel (b) bond stretching for first and second-

nearest-neighbor atoms, panel (c) only bond bending, panel (d) the final dispersion calculated

with bond-stretching and bond-bending terms. The high-energy optical modes are purely

stretching modes, while the acoustic modes and the low-energy region are determined by a

combination of bond bending and bond stretching of 2nd-nearest-neighbors.

In the MJ model it is possible to consider separately the contribution of stretching

and bending forces to the final dispersion relation. Figure 4.4 (panel (a)) shows the

dispersion including only stretching forces between nearest-neighbor springs: 60 modes

have zero frequency. A much better results is obtained by including also second nearest

neighbors, as seen in Fig. 4.4 (panel (b)). Bond-bending forces alone are not able to

describe a nanotube: they describe only low-frequency vibrations. The corresponding

dispersion of panel (c) shows 21 distinct non-zero modes. In panel (d) is shown the final

result, obtained by including all three potential energy terms. The bond-bending term

is responsible only for the low-energy branches, while the high-energy optical phonons

are determined only by stretching forces. The solutions are obtained by taking the

square root of the eigenvalues of the dynamical matrix. We set the solution
√

3 to be

the high-frequency optical phonon at 1600 cm−1; this fixes the value of the parameter
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k1. In Ref. [28] Mahan and Jeon assert that the relative weights of the three interactions

are k2/k1 = 0.06 and k3/k1 = 0.024 for a (10,0) CNT, but the corresponding figure

shows a dispersion that we obtain using k2/k1 = 0.12 and k3/k1 = 0.024.

It is interesting to compare directly the phonon dispersion of the MJ model and the

4NNFC approach with the parameters of Saito and coworkers. The obtained phonon-

dispersion curves and the density of states (DOS) for the (10,10) CNT are shown in

Fig. 4.5. For the former we obtain 65 distinct phonon branches, of which 10 modes

are non-degenerate and 55 are doubly degenerate. For the latter we obtain 12 non-

degenerate and 54 doubly degenerate modes.

The periodic boundary condition on the circumferential wave vector splits the modes

into 1D quantized subbands that translate into the sharp spikes in the DOS, or one-

dimensional van Hove singularities. A clear difference between the two models is the

DOS at ω = 0 cm−1. Since there is a q2 dependence in the acoustic modes of the

MJ model, we get a singularity at ω = 0, while in the 4NNFC model all acoustic

modes have a linear q dependence and the DOS is finite at ω = 0. We can directly

compare the results of graphene (see Fig. 3.9) and the (10,10) CNT within the 4NNFC

approach: in graphene we obtained a q2 dependence in the out-of-plane TA mode,

which implies a finite DOS at ω = 0, which is known as the two-dimensional Van Hove

singularity at the band edge [60]. The magnitude of the DOS at ω = 0 is greater in

graphene than in nanotubes, because a graphene sheet is weaker to bending than a

nanotube [61]. The most significant difference between the graphene and the nanotube

spectra is found in the low-energy range. The DOS of graphene is smoother and nearly

constant, while nanotubes present several peaks. The peak at ≈ 170 cm−1 appears

only in the nanotube spectrum. It is attributed to the radial breathing mode which is

unique to carbon nanotubes. It appears at 170.3 cm−1 in the MJ model and at 165.0

cm−1 in the 4NNFC model. Experimental results from Raman scattering are around

177 cm−1. We will discuss later in Sec. 4.4 about this important mode. Experimental

measurements of the vibrational DOS of carbon nanotubes were achieved by Rols and

coworkers by inelastic neutron scattering [62].

The details of the dispersion of the acoustic modes around the Γ point are shown

in panel (c) and (d). In a carbon nanotube there are four acoustic modes. The force

constants are invariant under infinitesimal translations along and perpendicular to the

tube axis, that leads to the translational sum rule of Eq. (2.31) and to three zero-

frequency modes at q = 0. The infinitesimal rotational-invariance condition imposed

on the force constants gives rise to a rotational sum rule and to an additional zero-

frequency mode. For this reason there are four acoustic modes in a carbon nanotube,

of which two are non-degenerate and one is doubly degenerate. Near the Γ point the
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Figure 4.5: Phonon dispersion and vibrational density of states (DOS) for a (10,10) CNT

calculated with the MJ model (panel (a)-(c)) and the 4NNFC approach (panel (b)-(d)) with

the set of parameters of Saito et al., listed in Table 3.1. T denotes the magnitude of the

translational vector. Panel (c)-(d) show a zoom of the phonon dispersion near the Γ point:

panel (c) shows four acoustic branches, where two increase linearly with q (LO, TW) and two

are degenerate (TA) and increase quadratically. In panel (d) all four acoustic modes have

linear dispersion for small wave vectors. Due to the fact that the effect of curvature is not

yet completely included in the force constants, the frequency of the rotational acoustic mode

(TW) is not exactly zero at q = 0 but ≈ 4 cm−1 (it gives an additional peak in the DOS).
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highest-energy mode is the longitudinal acoustic (LA) mode, followed by a twisting or

torsional mode (TW). The lowest energy modes are the transverse acoustic (TA) or

flexure modes, which are doubly degenerate. For infinitely long wavelength (q → 0),

these correspond respectively to a rigid translation along the tube axis, a rigid rotation

around the tube axis and rigid translations perpendicular to the axis. We will analyze

them in more detail in Sec. 4.5.

The four acoustic modes are important contributors to the low-temperature specific

heat and quantized phonon-thermal conductance, as we will see in Chap. 5. Although

the exact dispersion law is apparently irrelevant for the quantized thermal conductance,

the quadratic dispersion of the flexure modes, which leads to the one-dimensional sin-

gularity of the vibrational density of states at zero frequency, results in a very different

behavior of the low-temperature specific heat. The q2 dependence of the flexure modes

obtained by several ab initio calculations [46, 48, 57] has been reproduced only by few

other force-constant models [35, 55] which use much more parameters than the MJ

model. The 4NNFC approach in Fig. 4.5 (panel (d)) shows a linear dispersion for all

four acoustic modes. Furthermore, the calculated frequency at q = 0 for the rotational

acoustic mode (TW) is not zero as it must be, but has a finite value of ≈ 4 cm−1 for

the (10,10) CNT. This is a deficiency of the model, caused by the fact that the effect

of curvature is not perfectly included in the force constants. The rotational sum rule

is not satisfied. A new scaling for the force constant parameters was proposed in order

to treat the curvature effect correctly [13]. Using this correction, Saito et al. realized

that the frequency of the rotational acoustic mode shifts and becomes zero, while the

correction to the higher-frequency modes is very small (less than 5 cm−1). We do not

apply the same rescaling, but vary only the force constant φto, which is the one that

changes the most when passing from graphene to nanotubes. In graphene φto describes

forces perpendicular to the plane. In a nanotube, the component of this force constant

in the direction perpendicular to the cylindrical surface decreases with increasing θ, as

illustrated in Fig. 4.6, and thus becomes more relevant the farther are the neighbors.

In order to obtain the same amplitude of the motion in this direction as is obtained

in the case of graphene, one has to take φto/ cos (θ/2) instead of φto. The correction

becomes large with increasing bond length or increasing θ, because the corresponding

bond length becomes shorter than in the graphene plane. This correction depends

on the bond length and describes vibrations perpendicular to the cylindrical surface.

We approximate this correction applying it only to fourth nearest neighbors, and vary

empirically φ
(4)
to in order to obtain zero frequency for the rotational acoustic mode. For

a (10,10) nanotube we obtain a frequency of the twisting mode of ω ' 10−3 cm−1 at

q = 0, setting φ̃
(4)
to = φ

(4)
to (1 + ε) where ε ∼ 5.122 · 10−3.
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Figure 4.6: Correction of the out of plane

force constant φto. The figure shows a cut

through the nanotube along the circumfer-

ence. After rolling up a graphene sheet, due

to the curvature the effective bond length be-

comes shorter. Taking φ̃to = φto/ cos (θ/2) in-

stead of φto, it is possible to obtain the same

amplitude of the motion in a radial direction

as is obtained in graphene in the direction per-

pendicular to the sheet: φ̃⊥
to = φto.

Now we consider the new parametrization of the 4NNFC model that we proposed

for graphene in Sec. 3.4, and apply it to nanotubes. In agreement with the previous

parametrization we obtain 10 non-degenerate and 55 doubly degenerate modes. While

the high-energy optical phonons do not vary significantly, an interesting effect happens

for the acoustic modes: the two degenerate TA modes now show the correct quadratic

dispersion near the zone center, which was not given with the previous parametrization.

Since the acoustic TW mode has a finite frequency at q = 0 also in our parametrization,

we adjust the force constant φto as above. The quadratic modes are very sensitive

to changes in the parameters, and it is not enough to correct φto only for the fourth

nearest neighbors, but also for third and second neighbors. For the latter the correction

is smaller, because these are less affected by the effect of curvature. The application

of the correction procedure for the second, third, and fourth nearest neighbors1 results

in a frequency of the TW mode ω ' 10−1 cm−1 at q = 0. Figure 4.7 shows the result,

in direct comparison with the result of the parametrization of Saito and coworkers

including our correction. We will discuss later in Sec. 4.5 about the nature of the

modes.

4.3 Zigzag nanotubes

In this Section we consider the other type of achiral nanotubes: the zigzag (n, 0)

carbon nanotubes. We described the 4NNFC model applied to armchair nanotubes in

the previous Section. It can be applied easily also to zigzag nanotubes with only a

few changes. In order to obtain the force-constant matrices of atom A1 it is possible

1The correction to φto is ε ∼ 9.0 · 10−3, 9.5 · 10−3, and 1.42 · 10−2 for second, third, and fourth

nearest neighbors, respectively.
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Figure 4.7: Phonon dispersion and vibrational density of states (DOS) for a (10,10) CNT

calculated with the 4NNFC model with the parametrization of Saito et al. (panel (a)-(c))

and our new parametrization (panel (b)-(d)), given in Table 3.2. Both have been corrected

in order to obtain ω = 0 at q = 0 for the acoustic TW mode. Panel (c)-(d) show the low

frequency phonon band structure. The 1D quantized nature of the band structure is evident:

there are a series of 1D quantized subbands. The most important difference between the

two calculations is the behavior of the TA modes: in panel (c) these show linear dispersion,

resulting in a finite DOS at q = 0, while in panel (d) their dispersion is quadratic, which

reflects in a singularity in the DOS. The DOS increases stepwise with the entry of higher

subbands.
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Figure 4.8: Coordinate labeling of

atoms in a zigzag nanotube. Each

atom of type A or B is denoted by

a pair of integers (m, l), and its equi-

librium position is given by R0
ml =

la1 + m(a1 + a2).

either to rotate all the force constant matrices of atom A1 for armchair nanotubes by

90◦ or to change only the axes and let x be the direction of the nanotube axis. The

force-constant matrices of the other atoms can be obtained as for armchair nanotubes,

by rotating those of atom A1 by the appropriate angles.

The MJ model provides a new labeling that is specific for zigzag nanotubes. As

for armchair nanotubes, the atom coordinates are given in terms of graphene lattice

vectors: R0
ml = la1 + m(a1 + a2) as illustrated in Fig. 4.8. Now the angle between

two lattice points (two atoms of type A or two of type B) around the circumference is

θz = 2π/n. Defining now θml = θz(m + l/2) and c = 3d0/2, the cartesian coordinates

of atom A and its first nearest neighbors B1, B2, and B3 in the nanotube become:

RA,ml = [R cos(θml), R sin(θml), cl] (4.9)

RB1,ml = [R cos(θml + θz/2), R sin(θml + θz/2), cl + d0/2] (4.10)

RB2,m−1,l = [R cos(θml − θz/2), R sin(θml − θz/2), cl + d0/2] (4.11)

RB3,m,l−1 = [R cos(θml), R sin(θml), cl − d0] (4.12)

The six second nearest neighbors are situated at RA,m+1,l, RA,m,l+1, RA,m−1,l+1,

RA,m−1,l, RA,m,l−1, and RA,m+1,l−1. We construct the bond-stretching and bond-

bending terms as before but now for the zigzag geometry.

4.3.1 Detailed study for (10,0) CNTs

We consider both models presented above for calculating the phonon modes of a (10,0)

CNT. It has 40 atoms in the unit cell as the (10,10) CNT, but smaller diameter and a

longer unit cell (see Table 4.1 and Fig. 4.1). In the MJ model the relative weight for

the three interactions was set to k2/k1 = 0.12 and k3/k1 = 0.024, as for the (10,10)

CNT. In Ref. [28] Mahan and Jeon assert that the relative weights for a (10,0) CNT
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are k2/k1 = 0.09 and k3/k1 = 0.033 but we obtain his dispersion curves using the

firstly mentioned weights. The overall scaling of the dispersion curves was fixed by

setting the solution
√

3 to be the optical phonon at 1600 cm−1. For the 4NNFC model

we used the same parameters as for the (10,10) CNT. We obtain again 66 distinct

phonon branches, where 12 modes are non-degenerate and 54 are doubly degenerate.

Figure 4.9 shows the results using the MJ model (panel (a)) and the 4NNFC model with

the original parametrization of Saito and coworkers (panel (b)). As in the case of the

(10,10) CNT, the MJ model gives a correct behavior of the four acoustic branches, with

a q2 dependence for the flexure modes (panel (c)). In the 4NNFC model occurs again

the same problem in the low frequency region (panel (d)), as in the case of the (10,10)

CNT: The rotational acoustic mode has a non-zero frequency (∼ 21 cm−1) for q = 0.

As mentioned, it is due to the fact that the effect of curvature is not perfectly included

in the force constants. This effect becomes more and more evident for CNTs with

smaller diameter. Indeed, for the larger (10,10) CNT the effect is smaller, see Fig. 4.5

(panel (d)). In order to avoid such unphysical result, we use the same procedure we

used for the (10,10) CNT. We vary empirically φto in order to obtain zero frequency

for the rotational acoustic mode. We do this both for the parametrization of Saito

and coworkers and for our own parametrization. The results are shown in Fig. 4.10.

Considering first Saitos parametrization, for a (10,0) nanotube with a correction2 to

φto we obtain a frequency of the twisting mode of ω ' 10−3 cm−1 at q = 0. These

factors are greater than for the (10,10) CNT: the correction must be stronger because

of the smaller radius and the higher curvature effect of the (10,0) CNT. Considering

our own parametrization we obtain as wanted the quadratic TA mode and ω ' 10−1

cm−1 at q = 0 for the TW acoustic mode.3

2The parameter ε was ∼ 9.0 · 10−3, 9.5 · 10−3, and 3.89 · 10−2 for second, third, and fourth nearest

neighbors, respectively
3The correction to φto was ε ∼ 9.5 · 10−3, 1.0 · 10−2, and 4.88 · 10−2 for second, third, and fourth

nearest neighbors, respectively
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Figure 4.9: Phonon dispersion and vibrational density of states (DOS) for a (10,0) CNT,

calculated with the force constant model of Mahan and Jeon (panel (a)-(c)), and the fourth

nearest neighbor model (4NNFC) (panel (b)-(d)). Panel (c)-(d) show a larger scale repre-

sentation of the low-frequency region. Only the calculation within the MJ model gives a

quadratic dispersion for the transverse acoustic (TA) modes. In the 4NNFC model all acous-

tic modes have linear dispersion for small wave vectors. The rotational TW mode has not

zero frequency at q = 0 as it must be, but actually ∼ 21 cm−1. This effect is larger than in

the (10,10) CNT because of the smaller radius and the stronger curvature and it is also the

origin of an additional spike in the DOS.
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Figure 4.10: Phonon dispersion and vibrational density of states (DOS) for a (10,0) CNT

calculated with the fourth-nearest-neighbor model. Panel (a)-(c) are obtained with the

parametrization of Saito et al. and panel (b)-(d) with our new parametrization: they show

respectively linear and quadratic dispersion for the TA modes. In both models the φto con-

stants have been corrected in order to obtain zero frequency for the acoustic TW mode at

the Brillouin-zone center.
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4.4 Radial-breathing mode

The radial-breathing mode (RBM) arises from a radial expansion and contraction of

the entire tube. This mode is unique to single-walled CNTs and is taken as indica-

tive of the presence of nanotubes in a sample. Furthermore, it is the best known

feature in the Raman spectra of carbon nanotubes [10] and plays an important role

in experiments [63]. The RBM is often used to determine the diameter or diameter

distribution in nanotube samples on the basis of Raman data, as it has a particularly

simple relationship between its frequency and the tube diameter. We will show that

the frequency of the RBM is proportional to the inverse diameter of the tube and inde-

pendent of chirality. The expected dependence of the RBM frequency on diameter is:

ωRBM =
C1

dκ
t

+ C2(dt) (4.13)

with C1 a constant, C2 possibly depending on diameter dt and an exponent κ. This

functional dependence was first introduced by Jishi et al. [41] with C2=0 and κ=1.

Several articles and a range of values of C1 have been published, differing from each

other by a few per cent. A review of the experimental and theoretical values can be

found in Ref. [12]. For isolated tubes the values ranges from C1 = 218 to 248 cm−1 nm.

We calculate the RBM frequencies of a number of armchair (n = 3 − 12) and

zigzag (n = 6 − 20) nanotubes with the 4NNFC model with our parametrization.

The obtained frequencies are almost perfectly inverse proportional to the radius of

the tube as shown in Fig. 4.11 (panel (a)) and independent on chirality. The RBM

frequency decreases with increasing tube diameter and becomes zero in the limit of

infinite diameter, which corresponds to the out-of-plane tangential acoustic mode of

graphene at q = 0. The reason is that the force needed for a radial deformation

of a nanotube increases as the diameter decreases. By fitting the frequencies of the

RBM to tube diameters by the inverse proportional relation of Eq. (4.13), we get

negligible values for C2 and C1 = 212 cm−1 nm for armchair tubes (panel (b)), which is

in satisfactory agreement with the experimental value of 224 cm−1 nm [64]. For zigzag

nanotubes (panel (c)) we get C1 = 209 cm−1 nm. The values of C1 are in agreement

also with previous calculations [54,57,65-67]. We did the same calculations also with

the frequencies obtained by the original parametrization of Saito and coworkers. In

Fig. 4.11 the results are plotted in green. We obtain C1 = 223 cm−1 nm for armchair

tubes and C1 = 222 cm−1 nm for zigzag nanotubes. These are in better agreement

with experimental values than our parametrization, since the RBM frequencies are

somewhat higher.
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Figure 4.11: Panel (a): Frequency of the radial-breathing mode of various armchair

(n = 3 − 12) and zigzag (n = 6−20) tubes as a function of the nanotube diameter, calculated

with the 4NNFC model with our new parametrization. For comparison, the green line shows

the results for the original parametrization of Saito. A possible chirality dependence, if any,

is well below the resolution of the data. Panel (c) and (d) show the frequency of the RBM

as a function of the inverse tube diameter for armchair and zigzag tubes, respectively. The

solid lines are a linear fit to the data excluding the small-diameter tubes (3,3), (4,4), (6,0),

(7,0), which are marked by filled squares and triangles. These present a deviation from the

predicted behavior, with a decrease in the RBM frequency. Reference [57] explains it as a

consequence of the hybridization changes and the decrease of the π interaction induced by

the curvature.

The proportionality constant C1 is almost the same for armchair and zigzag tubes,

which suggests that there is no chirality dependence. This is due to the fact that the

RBM corresponds to a stretching of the graphene sheet in the [110] (armchair tubes) or

[100] (zigzag tubes) direction. Because the system is isotrope in the hexagonal plane,

the elastic constant that the describes the stretching of a graphene sheet is independent

on the direction [65]. Thus C1 is the same for all tubes and the RBM frequency depends

only on the diameter of the tube.

Also other low-frequency modes depend strongly on the tube diameter [13, 48].

Instead, the higher frequency modes do not have a strong dependence on the diameter

since the frequencies of the higher optical modes are more sensitively determined by

the local movements of the atoms.
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Figure 4.12: Raman-active normal mode eigenvectors and frequencies for a (10,0) CNT,

calculated with the MJ model. These vibrational modes are the seven strongest Raman-

active modes. The arrows indicate the magnitude and direction of the atomic displacements

for q = 0.

4.5 Visualization of the vibrational modes

After studying the dispersion relations of carbon nanotubes, we want to know how the

atoms do effectively move and proceed with visualizing their displacements. For this

purpose we diagonalize the dynamical matrix as before for every q vector to obtain

eigenfrequencies and eigenvectors. The latter contain the displacements of every basis

atom, and can be represented graphically. Among the great variety of vibrational

modes, we select significant examples for both the models that we presented above. We

choose to visualize some of the Raman-active normal modes that show strong Raman

intensity in experimental studies [10] (see also Sec. 1.3), and furthermore to have a look

at the four acoustic modes. In Fig. 4.12 we show the normal mode displacements for the

seven strongest Raman active modes for a (10,0) CNT at q = 0. Armchair nanotubes

show equivalent kind of modes as the zigzag ones, which suggests that vibrational modes

have no chirality dependence. Figure 4.13 shows three selected Raman active modes

for a (10,10) CNT for q = 0, calculated with the MJ model. Panel (a) shows the lowest

lying optical mode, whith E2g symmetry [12, 13], in this mode the nanotube moves

uniformly with an oval deformation of its cross section. In the previous Section we
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introduced the radial-breathing mode (RBM) (A1g symmetry), which is now illustrated

in panel (b): All atoms move in phase in the radial direction creating a breathing-like

vibration of the entire tube. A high-frequency optical mode with E2g symmetry is

shown in panel (c). It is clear that this mode is out-of-phase between nearest-neighbor

atoms, while the other two modes of panel (a)-(b) show in-phase motion. Most of the

low frequency modes have strongly diameter-changing movements, while the higher-

frequency modes consist in local diameter-independent movements of the atoms. For

direct comparison, Fig. 4.14 shows the same modes calculated with the 4NNFC model

with our parametrization. These vibrations are much more complicated than those in

Fig.4.13, since there is a considerable mode mixing. The RBM does not show purely

radial movement, but has also a component of rotation around the tube axis. We found

that the RBM is coupled to the acoustic TW mode, since both modes show breathing

behavior combined with a rotational motion.

Finally, we consider the behavior of the four acoustic modes: the doubly degenerate

transverse acoustic (TA) mode, the twisting (TW) mode and the longitudinal acoustic

(LA) mode. These are shown for nonzero wave vector (qT/π = 0.075) respectively in

panel (a), (b), and (c) of Fig. 4.15, on an expanded scale, to make them clearly visible.

Since they are independent on chirality, we show zigzag (10,0) CNTs in panel (a) and

armchair (10,10) CNTs in panel (b) and (c). The left (orange) tubes are calculated

with the MJ model, the right (blue) ones with the 4NNFC model. In the MJ model

the pure modes are clearly recognizable. For q 6= 0 the acoustic mode with lowest

energy is the TA, in which the whole tube makes bending oscillations, or vibrates like

a plucked string (the tube can be plucked in any direction perpendicular to its axis,

so this mode is doubly degenerate). In the TW mode portions of the tube are rotated

by varying amounts about the tube axis, therefore, it is called also torsional mode. It

results from a translation of graphene along the chiral vector. The acoustic mode with

highest frequency is the LA, in which the tube is stretched and compressed along its

axis, as is clearly observable from the side view. In the 4NNFC model the mode mixing

is evident: The TA mode represents bending oscillations with also a longitudinal com-

ponent and is similar to the LA mode. The TW mode shows a breathing-like behavior

with longitudinal component, but no torsion at all is present. We suggest that the MJ

model provides a rather elementary, quick method, that with only three parameters

and up-to second-nearest-neighbor interactions can reproduce only a simplified version

of the true vibrational behavior. The 4NNFC model with 12 adjustable parameters

and up-to fourth-nearest-neighbor interactions provides a much more realistic view.

However, we emphasize that for an unequivocal representation one has to consider the

eigenvectors and eigenfrequencies resulting from ab initio calculations.
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Figure 4.13: Selected Raman active vibrational modes of a (10,10) CNT, at q = 0, calculated

with the MJ model. For more details see the text.
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Figure 4.14: The same as in Fig. 4.13, calculated with the 4NNFC model.
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Figure 4.15: Acoustic modes for q 6= 0: the TA mode for a (10,0) CNT (panel (a)), the

TW and the LA mode for a (10,10) CNT (panel (b)-(c)). The tubes on the left (orange) are

calculated with the MJ model, that on the right (blue) with the 4NNFC model. See also the

text for more details.



Chapter 5
Thermodynamics and phonon transport

The thermal properties of carbon nanotubes are directly related to their unique struc-

ture and small size. Because of these properties, nanotubes may prove to be an ideal

material both for the study of low-dimensional phonon physics and for possible appli-

cations such as thermal management.

After explaining in Sec. 5.1 the role of anharmonicity in lattice dynamics, we turn

to investigate the specific heat cV of several carbon nanotubes in Sec. 5.2. The main

contribution to the specific heat of a nanotube is the vibrational one, because the

electronic one is negligible even at a few Kelvin [68]. We show that there is a close

connection between the behavior of the acoustic modes, the phonon density of states,

and the low-temperature specific heat. Section 5.3 deals with phonon heat transport

in carbon nanotubes, investigated using a method analogous to the Landauer theory

of electronic transport. We prove that in a low-temperature regime dominated by

ballistic-phonon propagation the thermal conductance of a nanotube is quantized, the

fundamental quantum of thermal conductance being π2k2
BT/(3h).

5.1 Temperature effects in lattice dynamics

Most of the temperature effects in solid-state physics have their origin in the anhar-

monicity of the lattice potential energy. However, the traditional theory of lattice

dynamics is based on the assumption of small vibrational amplitudes of the atoms

about their mean position. Under this condition, the properties of a crystal can be de-

scribed accurately in the harmonic approximation: The potential energy of the lattice

is expanded in powers of the ion displacements on their equilibrium positions and the

expansion is terminated after the first nonvanishing (quadratic) term.

Within this approximation, the lattice vibrations can be decoupled by a transforma-

77
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tion to normal coordinates. This leads, when the normal vibrations are quantized, to

the concept of phonons as noninteracting excitations of the lattice. The decoupling is

not possible when we take higher terms in the expansion of the potential. Generally, the

anharmonic terms are small compared with the harmonic part of the Hamiltonian and

their effect can be calculated within perturbation theory. They can be seen as pertur-

bations which cause transitions between two harmonic states and lead to interactions

between phonons. A phonon from a given state (q, s)1 will disappear after a finite time

through a multi-phonon process, e.g. decay into other phonons. The phonons then

have finite lifetime. At the same time, the anharmonic terms contribute to the phonon

energy, causing a renormalization of the phonon frequencies ωs(q). This frequency shift

must be taken into account, for example, in the determination of phonon frequencies by

resonance experiments (neutron scattering, Raman scattering, etc.). The finite lifetime

results in a broadening of the lines of the scattering spectrum.

The anharmonic terms play an important role in the thermodynamics of crystals.

They give rise to the phenomenon of thermal expansion, the difference between adia-

batic and isothermal processes, between specific heat at constant volume and at con-

stant pressure, and they influence the thermal conductivity and the temperature de-

pendence of phonon frequencies. Furthermore, the anharmonic terms determine the

thermal equilibrium of phonons and the lattice heat conduction.

The transport properties of a crystal are given both by the electron and the phonon

system. The mean number of phonons of type (q, s) present in thermal equilibrium at

temperature T is given as

ns(q) =
1

e~ωs(q)/kBT − 1
(5.1)

which represents a Bose-Einstein distribution function [22].

5.1.1 Thermal expansion

In the harmonic approximation, the equilibrium positions of the lattice ions are deter-

mined by minimizing the potential energy and are regarded as temperature indepen-

dent. Unfortunately, this is reasonable for most solids only for temperatures well below

the melting point: At very low temperatures, the ions move close to their equilibrium

positions because of the small thermal energies and the harmonic approximation suc-

ceeds in describing the atom motions. At higher temperatures, the thermal energy is

sufficient to permit the ions to move farther from their equilibrium positions and the

anharmonic terms become relevant.

1q is the wave vector and s the branch index.
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The harmonic approximation neglects thermal expansion and leads to identical adi-

abatic and isothermal elastic constants, and to a temperature independent specific heat

above the Debye temperature.2 This is not valid anymore when we take into account

the lattice anharmonicity. Thermal and caloric quantities show different behavior. The

importance of anharmonic terms is reflected in the high-temperature behavior of the

specific heat. In this temperature regime, the harmonic approximation states that the

specific heat due to lattice vibrations should obey the classical law of Dulong and Petit,

which predicts a contribution to the specific heat of 3kB per ion. The failure of the

high-temperature specific heat to approach this value is an anharmonic effect. Fur-

thermore, the frequency shift in the normal modes is due to the thermal expansion. In

real crystals the force constants Φ in the harmonic approximation are defined for the

equilibrium ion positions about which the harmonic expansion is made. However, since

in real crystals the harmonic approximation is not exact, a change in the equilibrium

lattice vectors due to anharmonic terms changes also the normal mode frequencies.

5.1.2 Thermal conductivity

In a system of non-interacting phonons, locally delivered thermal energy is distributed

through the crystal by phonons with the velocity of elastic waves. In a perfectly

harmonic crystal the phonon states are stationary states, that remain unaltered in

the course of the time and a thermal current carried by phonons will persist forever.

Therefore, a perfectly harmonic crystal would have an infinite thermal conductivity. In

the case of non-interacting phonons or phonons that interact through normal processes3

the total crystal momentum is conserved. Phonons carry energy even if the temperature

gradient is zero and, thus, the crystal has no thermal resistivity. Non-zero thermal

resistivity means that in the interaction process between phonons the conservation law

of total momentum is violated and so-called umklapp processes4 take place. These

processes are strongly temperature dependent.

At low temperatures the only scattering process that can occur at an appreciable

rate are those that conserve the total crystal momentum, thus the normal processes.

Umklapp processes are “frozen out”because they take place only between phonons with

2The Debye temperature ΘD = ~ωD/kB is a measure of the temperature above which all modes

begin to be excited and below which modes begin to be “frozen out”. The Debye frequency ωD, or

cutoff frequency, is a measure of the maximum phonon frequency.
3A normal process is a phonon collision in which the total initial and final crystal momenta are

equal. Energy and wave vector are conserved.
4In an umklapp process the total crystal momenta before and after the collision differ by a non-zero

reciprocal lattice vector.
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energy ~ωs that is not small compared with ~ωD, where ωD is the Debye frequency. At

low temperature the mean number of such phonons is

ns(q) =
1

e~ωs(q)/kBT − 1
≈ 1

e~ωD/kBT − 1
≈ e−~ωD/kBT . (5.2)

As the temperature drops, the number of phonons that can participate in umklapp

processes drops exponentially, the conductivity increases exponentially and the anhar-

monic terms become negligible. Without the umklapp processes the thermal conduc-

tivity would be infinite. As the conductivity increases exponentially with decreasing

temperature, the phonon mean free path becomes soon comparable to the mean free

path due to scattering of phonons by lattice imperfections or even to the mean free

path describing the scattering of phonons by the sides of the finite crystal. There-

fore, at very low temperatures the conductivity is limited by temperature-independent

scattering processes determined by the geometry and purity of the sample and the

temperature dependence of the conductivity becomes that of the specific heat.

The analysis of the full temperature range leads to the following result: In the

low-temperature region the conductance is limited by surface scattering and rises with

temperature as the phonon specific heat. As the temperature rises, umklapp pro-

cesses become frequent enough to yield a mean free path shorter than the temperature-

independent one. At this point the thermal conductivity reaches a maximum, beyond

which it declines rapidly reflecting the exponential increase in the number of umklapp

processes with rising temperature. The exponential decline is quickly replaced by a

slower power law, because scattering processes are enhanced by an increasing number

of phonons. Indeed, at high temperatures the total number of phonons in the crys-

tal is proportional to T because the thermal phonon occupation number of Eq. (5.1)

is ns(q) ≈ kBT/~ωs(q). For further specifications we refer to the book of Ashcroft

and Mermin [22] or Madelung [24]. Reference [69] presents the calculated thermal

conductivity of a carbon nanotube.

In conclusion, if we keep into account anharmonicity, we expect the normal modes

to interact among each other and to have a finite lifetime. Scattering processes lead

to a frequency shift and to a damping of phonons. Anharmonic effects have remark-

able influences mostly at high temperatures while the low-temperature range is well

described by the harmonic approximation.
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5.2 Specific heat

According to statistical thermodynamics, the vibrational partition function of phonons

can be written as

Z =
∏

q,s

e−~ωs(q)/2kBT

1 − e−~ωs(q)/kBT
, (5.3)

where kB is the Boltzmann constant, T is the temperature, and s = 1, . . . , 3r. The

internal energy is then

E = kBT
2

(
∂ lnZ

∂T

)
=
∑

q,s

~ωs(q)

2

e~ωs(q)/kBT + 1

e~ωs(q)/kBT − 1
(5.4)

=
∑

q,s

~ωs(q)

2
coth

(
~ωs(q)

2kBT

)
(5.5)

The specific heat is the change of total energy with temperature:

cV =
1

V

(
∂E

∂T

)

V

=
kB

V

∑

q,s

(
~ωs(q)

2kBT

)2
1

sinh2(~ωs(q)/2kBT )
. (5.6)

We do not distinguish between specific heat at constant volume or constant pressure,

since the harmonic approximation does not include thermal expansion of the lattice.

The specific heat depends in a detailed way on the frequency spectrum of the normal

modes. The frequency spectrum g(ω), or density of states (DOS), is defined such that

g(ω)dω is the fraction of eigenfrequencies in the interval (ω, ω + dω):

g(ω) =
1

3rN

∑

s

∫
V

(2π)3

dS

|∇ωs(q)| (5.7)

where the integration is done over a surface S of constant frequency in the first Brillouin

zone. There will be a structure of singularities in g(ω), reflecting the fact that the group

velocity ∇ωs(q) vanishes at some frequencies. The singularities are known as van Hove

singularities.

Within the harmonic approximation the thermodynamic functions are additive func-

tions of the eigenfrequencies ωs(q). However, since the crystal volume V is very large

and the q values are densely spaced, the sum over q can be replaced by an integral [70]:

∑

q,s

→
∑

s

∫
dq ≡

∑

s

V

(2π)3

∫
d3q (5.8)

=
∑

s

V

(2π)3

∫
dS

dωs

|∇ωs|
(5.9)

= 3rN

∫ ∞

0

g(ω)dω. (5.10)
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Dimension Phonon Phonon Specific

dispersion DOS heat

1D ω ∝ q2 g(ω) ∝ 1/
√
ω cV ∝

√
T

ω ∝ q g(ω) = const cV ∝ T

2D ω ∝ q2 g(ω) = const cV ∝ T

ω ∝ q g(ω) ∝ ω cV ∝ T 2

3D ω ∝ q g(ω) ∝ ω2 cV ∝ T 3

Table 5.1: Low-temperature be-

havior of the specific heat. The

dimensionality of the system has

great influence on the density of

states and, therefore, on the spe-

cific heat. At low temperature

only acoustic modes are excited.

These can have either linear or

quadratic dispersion.

Thus, for the specific heat we obtain:

cV = 3rNkB

∫ ∞

0

dω

(
~ω

2kBT

)2
g(ω)

sinh2(~ω/2kBT )
. (5.11)

The high-temperature (or classical) limit of this expression does not depend on the

particular structure of the carbon system and is equal to 3kB/m = 2078 mJ/gK with

m being the atomic mass of carbon. In the low temperature regime, modes with

~ωs(q) � kBT will negligibly contribute to Eq. (5.11), since the integrand will vanish

exponentially. However, because ωs(q) → 0 as q → 0 in the four acoustic branches of a

carbon nanotube, this condition is not satisfied by acoustic modes at long wavelengths,

even at very low temperature. These modes alone determine the behavior of the specific

heat at low temperatures. Furthermore, the low-temperature behavior of cV contains

information regarding the dimensionality of the system. Because nanotubes are quasi-

one dimensional (1D) systems consisting of rolled-up 2D sheets, they are expected to

exhibit both 1D and 2D behavior. Table 5.1 gives a general overview of the dependence

of cV on the dimensionality, on the density of states, and on the behavior of the acoustic

branches. The specific heat of carbon nanotubes is mainly determined by phonons,

electronic contributions to it can be neglected [68].

Figure 5.1 shows the calculated low-energy vibrational density of states of graphene

and of two (10,10) carbon nanotubes with respectively linear and quadratic dispersion of

the TA mode. The DOS of the nanotube with quadratic dispersion has a characteristic

singularity of the type 1/
√
ω at ω = 0, due to the q2 mode, while the nanotube

with linear dispersion and graphene have finite DOS at this frequency, as predicted in

Table 5.1. With increasing energy the DOS of the nanotubes increases stepwise with

the entry of higher subbands. This happens because the periodic boundary condition

on the circumferential wave vector splits each of the modes into 1D subbands that give

rise to sharp spikes in the DOS: At each band edge there is a van Hove singularity.

In contrast to the 1D DOS of the nanotubes, the calculated DOS of graphene varies
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Figure 5.1: Phonon density of states for a (10,10) CNT in the Mahan-Jeon (MJ) model (red

line), a (10,10) CNT in the fourth-nearest-neighbor (4NNFC) model with only linear acoustic

modes (green line) and graphene in the 4NNFC model (blue line). The two latter lines show

finite DOS at ω = 0, while the first shows a singularity that is due to the acoustic mode

with q2 dependence. This prompts again that the 4NNFC model with the parametrization

of Saito et al. does not yield the flexural character of the TA mode. This results in a wrong

specific heat at low temperatures, because the behavior of cV depends sensitively on the DOS.

Beside this, the DOS of the nanotubes increases stepwise with the entry of higher subbands,

demonstrating the 1D behavior at low temperatures. Instead, the q2 mode of graphene

gives rise to a nearly constant DOS for graphene. The curves are not scaled, therefore the

comparison is only qualitative.

smoothly. The quadratic dispersion yields a constant DOS in 2D, which dominates the

contribution of the other two (linear dispersing) acoustic modes. Thus, in a nanotube

the phonons are 1D at the lowest temperatures: Only the four acoustic subbands are

occupied. At a temperature Topt = ~ωopt/6kB, the first optical subband with frequency

ωopt at q = 0 begins to contribute to the specific heat. The optical phonons give

negligible contribution to the specific heat for temperatures less than Topt, for which

the factor multiplying g(ω) in the integral (5.11) becomes smaller than 0.1 [71]. For

example for ωopt ≈ 20 cm−1 this happens at Topt = 4.8 K. Well above Topt, many

subbands are occupied and the tube is essentially 2D.

The specific heat calculated from the theoretical DOS spectra is shown in Fig. 5.2 as
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Figure 5.2: Panel (a): specific heat as a function of temperature for graphene (blue line),

calculated with the 4NNFC model and our new parameters of Table 3.2, and for a (10,10)

CNT calculated with the MJ model (red line), the 4NNFC model with our parameters (orange

line), and the 4NNFC model with the original constants of Saito et al. (green line). The

inset shows a wider temperature interval to demonstrate that cV approaches the value 2078

mJ/gK for high temperatures. Panel (b): specific heat on a logarithmic scale for the low

frequency region. The assignment of the colors is the same as in panel (a).

a function of temperature. The dimensionality of the system reflects in the behavior of

cV: In graphene the low-temperature specific heat is dominated by the quadratic layer-

bending mode and therefore has a roughly linear T dependence. We could also confirm

that the (10,10) CNT with linear dispersing acoustic modes (green line in Fig. 5.2)

shows cV ∝ T at low T , with an increase in slope due to the contribution from the first

subband above ≈4 K. This behavior is in accordance with the prediction of Table 5.1

and is a direct confirmation of a 1D quantized phonon spectrum in carbon nanotubes.

For the nanotubes with a quadratic dispersion of the TA modes (red and orange lines

in Fig. 5.2), the task of recognizing the correct T dependence of cV becomes more

involved. For temperatures below Topt we can not define a clear T dependence, since

two linear and two quadratic modes contribute to cV, superposing on each other. We

find that between 1 K and Topt the dependence is linear in T , which suggests that the

linear modes are already dominating. Above Topt the slope increases due to the optical

phonons. In the calculation with the Mahan-Jeon (MJ) model (red line in Fig. 5.2)

this happens earlier than in the 4NNFC model with our parametrization (orange line).

This is due to the fact that the first gives a lower frequency for ωopt, which is 12.6
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Figure 5.3: Chirality dependence of the specific heat. Panel (a): temperature dependence

of cV for a (10,10) CNT (straight lines) and a (10,0) CNT (dashed lines). The assignment

of the colors is the same as in Fig. 5.2. Panel (b): the effect of tube diameter on zigzag

and armchair CNT specific heat. At a given temperature the specific heat increases with the

increase of tube diameter. The upper limit is given by graphene, with cV = 794 mJ/gK at

300 K.

cm−1, while the other one gives 20.2 cm−1. At high temperatures, all the specific

heats are identical and converge to the high temperature limit of 2078 mJ/gK. At low

temperatures, the nanotube curve lies well below the graphene one because the tube

has no low-energy counterpart to the layer bending modes [7]. Our results for cV agree

very well with previous calculations and experiments [7,71-73].

Similar results can be obtained from other armchair and zigzag nanotubes. But since

the first optical subband edge varies from tube to tube, the turning points are different,

resulting in crossover of cV curves. The general uptrend and the high-temperature limit

are the same. Figure 5.3 (panel (a)) shows the specific heat curves for a (10,10) and

a (10,0) CNT. The tube diameter influences the specific heat of carbon nanotubes,

especially in the range of 25-350 K. In order to discern the effect of tube diameter

on the specific heat, additional results for T = 300 K are displayed in Fig. 5.3 (panel

(b)), using the 4NNFC model with our parametrization. At a given temperature the

specific heat increases with the increase of tube diameter. This was as expected, since

for very large diameters the curve should approach the cV value of graphene, which

is 794 mJ/gK at 300 K. However, the effect diminishes at large tube diameter. The

chirality shows only a small effect in the tubes specific heat, with cV of the zigzag tubes
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lying over that of the armchair tubes. This small effect is negligible and could also be

caused by inaccuracies of the model description. The results are in good agreement

with those of Ref. [74, 75].

5.3 Landauer phonon transport

The physics of mesoscopic electron transport in one dimension has attracted a lot of

attention in the last two decades. One striking result is the quantization of electri-

cal conduction, observed in a quasi one dimensional constriction of two dimensional

electron gas between reservoirs. The conductance of this system is determined by the

number of participating quantum states or ‘channels’ within the constriction. Each

spin-degenerate channel contributes a quantized unit of 2e2/h to the electrical conduc-

tance, as has been understood within the framework of Landauer theory. In the case

of an ideal long one-dimensional wire with no scattering, the conductance between the

electrodes is [76]:

G = NC
2e2

h
(5.12)

with NC the number of channels available for transport. This leads to a quantized

conductance.

One dimensional ballistic phonon transport should also be possible. Phonon heat

transport in mesoscopic systems can be investigated using methods analogous to the

Landauer description of electrical conductance. The thermal conductance of phonon

waveguides in the ballistic, one-dimensional limit has recently been calculated using

the Landauer formula [77, 78].

5.3.1 Phonon currents

We consider a model of an ideal one-dimensional heat conductor as illustrated in

Fig. 5.4. Two long perfect leads join a central segment in which the phonon scatter-

ing occurs. We consider only elastic scattering and neglect phonon-phonon interaction.

reservoir
Thot

lead 1 lead 2region
scattering reservoir

Tcold

Figure 5.4: Schematic diagram of the model wire. The left and right reservoirs are at

temperatures Thot and Tcold, respectively.
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The other ends of the two leads are connected to reservoirs of temperature Thot and Tcold

where the phonon distributions are Bose-Einstein distributions ηi(ω) = 1/(e~ω/kBTi −1)

with i = hot/cold. No scattering occurs at the reservoir-lead connections. The calcu-

lation of the heat transport proceeds as in the calculation of the ideal electrical con-

ductance (Eq. (5.12)) except that we are interested in energy transport, rather than

number transport, and that the thermal distribution is given by the Bose distribution

η(ω) rather than by the Fermi distribution. Considering first the transport by the right

moving phonons, the energy flux is [77]:

J+ =
1

2π

∑

s

∫ ∞

0

dq ~ωs(q) ηhot(ωs(q)) vs(q) Ts(q) (5.13)

where ωs(q) is the dispersion relation of the discrete mode s, vs(q) is the group velocity

and Ts(q) are transmission coefficients characterizing the coupling of waveguide modes

to the reservoirs. Transforming the integral to an integral over frequencies yields an

expression for the heat transport by right moving phonons that can be written as a

sum of mode contributions J+ =
∑

s J
+
s with:

J+
s =

1

2π

∫ ωmax
s

ωmin
s

dω ~ω ηhot(ω) Ts(ω), (5.14)

where ωmin
s and ωmax

s are the cutoff frequencies of the sth mode, that define the fre-

quency interval in which the mode propagates. The group velocity vs = ∂ωs/∂q was

canceled by the 1D density of states g(ωs) = ∂q/∂ωs. The heat transport is given by

summing J+
s over the modes s and subtracting the analogous expression for

∑
s J

−
s for

the left moving phonons. The reservoir-to-reservoir heat current or Landauer energy

flux, takes the form:

Jph =
∑

s

∫ ωmax
s

ωmin
s

dω

2π
~ω [ηhot − ηcold] Ts(ω) (5.15)

This expression is similar to the Landauer result for electrical current:

Jel =

∫
T (E)[fhot − fcold] dE (5.16)

in a junction connecting two electron reservoirs characterized by Fermi distributions fi

and a transmission function T (E).

Assuming perfectly adiabatic contact between the thermal reservoirs and the bal-

listic quantum wire, the transmission function for the mode s is a step function:

Ts(ω) =





1 for ωmin

s ≤ ω ≤ ωmax
s ,

0 otherwise.
(5.17)
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Figure 5.5: Phonon dispersion of a (10,10) CNT and the transmission function T =
∑

s Ts(ω).

The latter is a sum of s = 120 step functions.

The total transmission function is given by:

T =
∑

s

Ts(ω). (5.18)

For a (10,10) CNT it is illustrated in Fig. 5.5 (for the evaluation of the total transmission

function see App. A) Considering only the total transmission, it is possible to eliminate

the sum over s in Eq. (5.15), obtaining for the heat current:

Jph =

∫ ∞

0

dω

2π
~ω [ηhot − ηcold] T (ω) (5.19)
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5.3.2 Thermal conductance

In this Section, we investigate the low-temperature thermal conductance of carbon nan-

otubes placed between hot and cold heat baths and the possibility of ballistic phonon

transport within the nanotube. The reservoirs are represented as systems of indepen-

dent harmonic oscillators at thermal equilibrium. We consider a nanotube coupled

linearly to these thermal environments and neglect anharmonic effects. The thermal

conductance is defined as:

κph =
Jph

∆T
(5.20)

with ∆T = Thot − Tcold. In the limit of linear response, ∆T � T ≡ (Thot + Tcold)/2, we

obtain using Eq. (5.19) and the substitution x = ~ω/kBT :

κph =
k2

BT

h

∫ ∞

0

dx
x2ex

(ex − 1)2
T
(
x
kBT

~

)
. (5.21)

This equation plays the role of a ‘universal’ phonon conductance in direct analogy with

the expression (5.12) for the electronic case. An important statement is that the result

is independent of all details of the dispersion curve except the transmission function.

This arises because the density of states in the frequency integral is cancelled by the

group velocity. (For the evaluation of the integral in Eq. (5.21) see App. B).

In the following, we demonstrate that at low temperatures a carbon nanotube

behaves as a ballistic, one-dimensional wire and the phonon thermal conductance is

quantized. The integral in Eq. (5.21) is given by the product of two functions: the

transmission function and a weight function x2ex/(ex − 1)2. The former is related to

the phonon spectral properties of the nanotube and the latter takes into account the

effects due to temperature. For high temperatures, the two functions are non-zero

within the same range, this means that all the transmission modes contribute to the

thermal conductance. Whereas, in the limit of low temperature, the broadness of the

weight function is extended only to the low energy modes. Fig. 5.6 illustrates schemat-

ically the relative behavior of these two functions. Therefore, at low temperatures only

the four lowest lying acoustic modes of a nanotube give an appreciable contribution

to the thermal conductance. In this temperature regime Eq. (5.21) becomes greatly

simplified:

κph ' k2
BT

h
4

∫ ∞

0

dx
x2ex

(ex − 1)2
= 4

π2k2
BT

3h
. (5.22)

Here, 4 represents the number of acoustic branches. The upper limit of the integral is

of few importance, because the integrand function falls off rapidly, before the successive
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Figure 5.6: Sketch of the two functions that are multiplied in the integral in Eq. (5.21):

the transmission function (here, that of a carbon nanotube, blue line) and the temperature-

dependent weight function x2ex/(ex−1)2 (red line). For low temperatures, the weight function

falls off to zero before the first step in the transmission function takes place. This step is from

4 to 6 (as indicated on the axis) for a nanotube and is due to the excitation of the lowest

optical modes. For this reason, at low temperatures only the 4 acoustic modes contribute to

the thermal conductance.

step in the transmission function takes place (see Fig. 5.6). A fundamental relation

holds for each mode:

κ0 =
π2k2

BT

3h
, (5.23)

an expression independent of any material parameters. This quantum of thermal con-

ductance represents the maximum possible value of energy transported per phonon

mode. It does not depend on particle statistics, therefore, is universal for fermions,

bosons, and anyons [79]. Figure 5.7 shows the temperature dependent thermal conduc-

tance of a (10,10) CNT, normalized to the value of 4κ0. The calculated values approach

unity in the low temperature limit, demonstrating that the phonon thermal conduc-

tance of carbon nanotubes is quantized. Steps are not observed, however, because

of the broadening of the Bose-Einstein distribution compared with the subband edge

separation. Furthermore, the thermal conductance depends only on the tube radius

and not on chirality. Results for armchair tubes are very similar to the ones for zigzag

tubes, when the same diameters are compared. This arises because the energy of the

lowest lying optical modes, ~ωo, is determined only by the tube radius and decreases

approximately according to ∼ 1/R2 [11]. Figure 5.7 (panel (b)) shows the thermal

conductance for several nanotubes.

It is interesting to consider the effect of the behavior of the acoustic branches on the

thermal conductance, whether it is relevant or not if the TW acoustic mode has linear
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Figure 5.7: Panel (a): Phonon thermal conductance for a (10,10) CNT calculated with

the MJ model (red line), the 4NNFC model with our parameters (orange line), and the

4NNFC model with the original constants of Saito et al. (green line). The two latter show,

respectively, quadratic and linear dispersion for the TA mode, however this difference does

not influence the qualitative behavior of the two curves. The deviations above 10 K are due

to small differences in the optical frequencies. Panel (b): Thermal conductance for several

carbon nanotubes, calculated with our parametrization. The length of the plateau depends

on the lowest optical frequency.

or quadratic dependence on q. It is clear that, to construct the transmission function,

it does not matter whether the dispersions are linear or quadratic, but only that the

branch’s upper and lower limits should be accurately computed. We performed the

calculations for both cases and obtained very similar results, as illustrated in Fig. 5.7

(panel (a)). The results of the 4NNFC model are believed to be more accurate than the

ones obtained using Mahan and Jeon’s method for the dispersions, because the latter

does not correctly reproduce the graphene phonon dispersion.

Our results are in good agreement with those of Yamamoto et al. [11] and Mingo

et al. [80]. Experimental studies were achieved by Schwab et al. [8], who observed

the quantum thermal conductance in a nanofabricated 1D structure, which behaves

essentially like a phonon waveguide. Brown et al. [81] measured simultaneously ballistic

thermal and electrical conductance of individual multiwall carbon nanotubes.

Expression (5.21) represents an idealized case in which the transmission of phonons

from one reservoir to the other happens without reflections. A more realistic model has

to incorporate the effects of the reflections caused by the contacts between the reservoirs

and the 1D wire. Furthermore, whenever the system size is larger than the mean free
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path, which depends on temperature, scattering of phonons due to anharmonicity of

the interatomic potential begins to decrease the conductance and the transport is no

longer ballistic.



Conclusions and perspectives

The vibrational properties of carbon nanotubes play a fundamental role in the physics

and the characterization of modern materials. Apart from being of fundamental interest

for both experimental and theoretical research, vibrations are of central importance for

the application of nanotubes in electronic devices.

According to Moore’s Law, the microelectronic devices have been continuously

scaled down. The limits to the further miniaturization of microelectronics have led

to intense research directed toward the development of nanoelectronics. However, the

decrease in feature size and the increase in power consumption give rise to a funda-

mental problem: How can we cope with the enormous heat generation? Modelling heat

transfer of carbon nanotubes is a serious issue for understanding the thermal properties

of nanotube-based composites and nanoelectronic devices. Key point is that in carbon

nanotubes the thermal properties are dominated at all temperatures by phonons rather

than by electrons. Most heat is carried by phonons of large wave vector and they have

mean free paths at room temperature between 1 and 100 nm. Therefore, in many sys-

tems of current interest, the scale of the microstructure is the same scale as the mean

free path of the phonons and, sometimes, comparable to the phonon wavelength. In

order to have a satisfactory description of this effect one needs an accurate understand-

ing of the fundamental phonon processes, in particular scattering by electrons and by

zone boundaries.

In this work, we developed a picture of the vibrational properties of armchair and

zigzag carbon nanotubes. The calculations of the phonons were accomplished by com-

paring and modifying two different force-constant models: A valence force-field model

with three free parameters [28] and one consisting in the direct parameterization of the

real-space force constants, with twelve parameters [13]. While the former is optimized

for the calculation of phonon dispersions of carbon nanotubes, the latter was intro-

duced for graphene and then adapted to nanotube geometry. In the first case we used
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parameters present in literature whereas in the second one we achieved a new parame-

terization of the force constants of graphene. Indeed, in the original parameterization

the force constants were empirically determined by fitting to measured elastic constants

and phonon frequencies. We applied a method called ‘force matching’, consisting of

an optimization procedure which tries to match as closely as possible ab initio-derived

forces. This method is valid since ab initio data can complement the experimental

quantities normally used to fit potentials. In the specific, by fitting the twelve free

parameters and considering atomic interactions up to fourth nearest neighbors, for al-

most the whole spectrum of the graphene we obtained an excellent agreement with

the ab initio data [50]. With the same force constant model adapted to the geometry

of carbon nanotubes and with our new parameterization, the low-frequency region of

the phonon spectrum of carbon nanotubes shows remarkable changes. We found a

qualitative difference with the results of the previous parameterization in a quadratic,

rather than linear, dispersion of the transverse acoustic modes of nanotubes. There is

disagreement in literature about the character of these so-called flexural modes. It is

known from classical elasticity theory that in a solid wire there are flexural modes, but

it is not obvious that nanotubes should have flexural modes, too. Only a detailed study

of symmetry rules shows that the correct behavior must be quadratic. Furthermore,

we put some corrections to the parameterizations for the special cases of the (10,10)

and (10,0) CNT, in order to remove the problem of non-zero frequency of the twisting

mode at zero wave vector.

For a better understanding, we visualized selected vibrational modes and compared

the results obtained using the above mentioned two different force-constant models.

With the three-parameter model we found atomic movements similar to those pub-

lished in the literature, whereas with the twelve-parameter model the character of the

vibrations was not clear due to considerable mode mixing. We suggest that a higher

number of parameters should provide a more reliable result.

Eventually, we studied some thermal properties of carbon nanotubes through the

calculation of the specific heat and the thermal conductance of nanotubes of different

diameter and chirality. Comparing calculations for graphene and carbon nanotubes

we demonstrated that the specific heat directly reflects the dimensionality of the sys-

tem. Because nanotubes are quasi one-dimensional systems consisting of rolled-up 2D

sheets, they exhibit both 1D and 2D behavior. Concerning heat transport, we showed

that nanotubes can readily conduct heat by ballistic phonon propagation and that at

low temperatures the thermal conductance for a single phonon channel approaches a

maximum value of κ0 = π2k2
BT/(3h), the universal quantum of thermal conductance.
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Despite the extensive work done so far, there are still a lot of interesting issues

to be resolved. First of all the fourth-nearest-neighbor (4NNFC) model with twelve

parameters should be improved paying particular attention to the behavior of the

twisting mode. For this purpose one needs a direct implementation of the rotational

sum rule. Afterwards, the model has to be generalized in order to describe tubes of

various chiralities. Eventually, the question of how the atoms do effectively move should

be clarified taking into consideration ab initio eigenvectors. Through a comparison

between the latter and the eigenvectors obtained from the 4NNFC model it is possible

to proof the reliability of the model approach. For this purpose it is important to include

and study the influence of the non-diagonal terms in the force-constant tensors.

Regarding the specific heat and the thermal conductance, we recommend a system-

atic study with a qualitative analysis of the dependence on temperature, especially in

the low-temperature regime. The influence of chirality on the behaviour of cV and κ/κ0

has to be studied in detail and a classification has to be performed.

Wider tasks are the vibrational properties of double- and multi-wall carbon nano-

tubes. Each layer can be viewed as obtained by rolling up an infinite strip of a graphite

sheet into a seamless cylinder. The interlayer carbon-carbon interactions can be de-

scribed by force constants of the valence force-field type obtained by fitting of the

phonon dispersion of graphite. The interlayer interactions can be modeled by a poten-

tial of the Lennard-Jones type [82].

There are also very interesting topics that are closely related to experiments. The

interplay between discrete vibrational and electronic degrees of freedom in molecular

electronic devices represents an ascending research field. There are already both theo-

retical [83-85] and experimental [63] works showing that current directly injected into a

suspended single-wall carbon nanotube can be used to excite, detect, and control a spe-

cific vibrational mode of the molecule. More theoretical work is needed to understand

the current dependence of phonon-assisted tunnelling.

Another very important possible application of nanotubes where vibrations play a

fundamental role is the fabrication of mass sensors based on a resonating CNT can-

tilever. The working principle is that the resonant frequency of the cantilever is de-

pendent on the mass of the device, thus, by monitoring the resonant frequency change

of the cantilever, any mass changes of the device can be detected. Such studies of

nanoelectromechanical systems (NEMS) [86] promise to revolutionize measurements of

extremely small displacements and extremely weak forces. NEMS can be built with

mass sensitivities approaching a few attograms and with cross-sections of about 10

nm. The small effective mass of the vibrating part of the device gives NEMS a high

sensitivity to additional masses, opening a wide range of sensing applications.
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Appendix A
A topological approach to the transmission

calculation

In this Appendix, we present a method to calculate the total transmission function,

which is defined in Eq. (5.18). Basically, we need an algorithm that counts the number

of phonon branches (accounting also for possible degenerations) populated at a fixed

frequency ω. To clarify the procedure we explain the method on the prototypical ex-

ample of a simple phonon dispersion, illustrated in Fig. A.1.
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ω Figure A.1: A line of constant

frequency (orange) crossing some

branches of a phonon spectrum (blue

lines). qA, qB and qC denote the wave

vectors of the crossing points. The

lower panel represents the number n

of branches that lie under the line

ω = ω, plotted against the wave vec-

tor. The number of steps in n(q) are

equal to the transmission: T (ω) = 3.

The line representing a fixed frequency ω crosses three branches of the dispersion, thus

for ω = ω the transmission is T (ω) = 3. The decisive point now is to formulate an

appropriate algorithm that can do this for a fine grid of frequencies of an arbitrary

phonon dispersion. The easiest way would be to fix a frequency and to count numer-
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ically how often this frequency appears in the phonon dispersion, which means how

many branches cross the line ω = ω. This is easy to count by hand, but does not

work when translated in a computer language. The problem is that in general we do

not have the analytical expression for the dispersion curves, but only an amount of

points. Our data are such that for every discrete q-vector between 0 and π/T , we have

a set of the corresponding frequencies. With this method a computer would provide

the phonon density of states instead of the wanted transmission function.

There is a method that works well even if the curves are made up only by single

points. The idea is to choose a fine grid of q-vectors, and for each of them to run a

loop over frequencies, counting how many branches for a fixed q appear with ω < ω.

Looking at the example of Fig. A.1, for q-vectors of the interval 0 < q < qA there are

n = 2 branches lying below the line ω = ω. At qA there is a crossing, so that for

qA < q < qB, only one branch lies under the line. For qB < q < qC there are again

two branches and for qC < q < π/T there is one. This is plotted in the lower panel of

Fig. A.1. The decisive point is to count the number of steps in the function n. In our

example, we had three steps, respectively at qA, qB and qC. The transmission function

at the frequency ω is equal to the number of steps: T (ω) = 3. There can be also

special cases where a step has |∆n| = 2. This has to be taken into account and has to

be counted as 2. The transmission is thus given by:

T (ω) =

Rω∑

rω=1

|crω
| (A.1)

where rω = 1, . . . , Rω are the steps and crω
is the amplitude of the rωth step. This has

to be done for a fine grid of frequencies of the whole spectrum. The final result is the

transmission function T (ω).



Appendix B
Integral of the thermal conductance

In this Appendix, we provide the methods for solving the integral that appears in the

expression for the thermal conductance. This was given by Eq. (5.21):

κph = kBγ

∫ ∞

0

dx
x2ex

(ex − 1)2
T (xγ) with γ =

kBT

~
(B.1)

where the transmission function T is a sum of step functions defined in Eq. (5.17).

Dividing the whole frequency range from 0 to ωmax in Nbin small intervals (bins), we

can split T in a set of constants functions Tn defined in these intervals:

T (xγ) =

Nbin∑

n=1

Tn [Θ(γ(x− xn)) · Θ(γ(xn+1 − x))] (B.2)

where Θ are step functions. Inserting Eq. (B.2) in Eq. (B.1) it is possible to put
∑

n Tn

outside of the integral and eliminate the step functions changing the integration limits:

κph = kBγ

Nbin∑

n=1

Tn

∫ ∞

0

dx
x2ex

(ex − 1)2
Θ(γ(x− xn)) · Θ(γ(xn+1 − x)) (B.3)

= kBγ

Nbin∑

n=1

Tn

∫ xn+1

xn

dx
x2ex

(ex − 1)2

︸ ︷︷ ︸
F (xn, xn+1)

. (B.4)

The analytical expression for F (xn, xn+1) is:

F (xn, xn+1) =
x2

nexn

exn − 1
− x2

n+1e
xn+1

exn+1 − 1
+ 2 ln

(1 − exn+1)xn+1

(1 − exn)xn

+ 2 [Li2(e
xn+1) − Li2(e

xn)] . (B.5)
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In this expression appears the dilogarithm function1 Li2(s), which is a special case of

the polylogarithm function Liz(s) for z = 2 [87]. The polylogarithm function can be

defined by the sum:

Liz(s) =

∞∑

n=1

sn

nz
. (B.6)

The dilogarithm function is defined also by the integral:

Li2(s) =

∫ 0

s

ln(1 − t)

t
dt. (B.7)

The real and imaginary part of Li2(s) are plotted in Fig. B.1.
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2
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Figure B.1: The dilogarithm func-

tion Li2(s). The figures below are

taken from Ref. [87].

Since there are great numerical problems for evaluating Eq. (B.5) for large, but still

finite values of xn and xn+1, which is the case here2 (it appears even exn), we must find

another way to solve Eq. (B.4). Starting point is the function F (0, xn). For xn → ∞
the integration is very easy:

F (0,∞) =

∫ ∞

0

dx
x2ex

(ex − 1)2
=
π2

3
(B.8)

1It is called also Lewin function or Appel function.
2Note that x is defined as x = ~ω/kBT , so that large values of x are given by low temperatures

and/or high frequencies.
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which means that for xn → ∞ the function F (0, xn) converges to π2/3. For small

values of xn, it is possible to evaluate F (0, xn) without numerical problems. Fig. B.2

shows the behavior of the function F (0, x).

0 5 10 15 20 250
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3

π2

3

x x~

Figure B.2: Plot of the function

F (0, x) =
∫ x
0 dt t2et/(et − 1)2. Note

that in Chap. 5, x depends both on

frequency and temperature through

the relation x = ~ω/kBT . For large

values of x, the function converges to

π2/3.

For x > x̃ the function reaches the asymptotic value π2/3. That means that starting

from a certain value x̃ it is not necessary any more to calculate F using Eq. (B.5), but

one can set F (0, x) directly equal to π2/3, avoiding numerical problems due to large x

values. Then the integral of Eq. (B.4) can be solved as:

κph = kBγ

Nbin∑

n=1

Tn

(∫ xn+1

0

dx
x2ex

(ex − 1)2
−
∫ xn

0

dx
x2ex

(ex − 1)2

)
(B.9)

= kBγ

Nbin∑

n=1

Tn [F (0, xn+1) − F (0, xn)] . (B.10)
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G. Dresselhaus, and M. S. Dresselhaus, Phonon trigonal warping effect in

graphite and carbon nanotubes, Phys. Rev. Lett. 90, 27403 (2003). online.

[54] V. N. Popov, V. E. van Doren, and M. Balkanski, Lattice dynamics of

single-walled carbon nanotubes, Phys. Rev. B 59, 8355 (1999). online.

[55] V. N. Popov, V. E. van Doren, and M. Balkanski, Elastic properties of

single-walled carbon nanotubes, Phys. Rev. B 61, 3078 (2000). online.

[56] J. Yu, R. K. Kalia, and P. Vashishta, Phonons in graphitic tubules: a tight

binding molecular dynamics study, J. Chem. Phys. 103, 6697 (1995). online.

[57] D. Sánchez-Portal, E. Artacho, J. M. Soler, A. Rubio, and P. Ordejón, Ab initio

structural, elastic, and vibrational properties of carbon nanotubes, Phys. Rev. B

59, 12678 (1999). online.

[58] K. P. Bohnen, R. Heid, H. J. Liu, and C. T. Chan, Lattice dynamics and

electron-phonon interaction in (3,3) carbon nanotubes, Phys. Rev. Lett. 93,

245501 (2004). online.

[59] X. Zhao, Y. Liu, S. Inoue, T. Suzuki, R. O. Jones, and Y. Ando, Smallest carbon
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Ich möchte meinen Eltern dafür danken, dass sie mich in diesen Jahren unterstützt

haben und Vertrauen in mich gehabt haben. Sie haben mich bis zum Erreichen dieses

wichtigen Ziels immer wieder ermutigt.

Regensburg, März 2006

111



112



Ringraziamenti

Inanzitutto ringrazio il Dott.Giovanni Cuniberti per avermi introdotto al mondo della

ricerca universitaria e per il tempo dedicato a condurmi nei vari ambiti del progetto.
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